刷题首页
题库
高中数学
题干
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用
C
(单位:万元)与隔热层厚度
x
(单位:cm)满足关系
C
(
x
)=
(0≤
x
≤10),若不建隔热层,每年能源消耗费用为8万元,设
f
(
x
)为隔热层建造费用与20年的能源消耗费用之和.
(1)求
k
的值及
f
(
x
)的表达式;
(2)隔热层修建多厚时,总费用
f
(
x
)达到最小,并求最小值.
上一题
下一题
0.99难度 解答题 更新时间:2017-08-14 04:26:15
答案(点此获取答案解析)
同类题1
如图所示,一座小岛距离海岸线上最近的点
的距离是
,从点
沿海岸正东
处有一个城镇.假设一个人驾驶的小船的平均速度为
,步行的速度是
,用
(单位:
)表示他从小岛到城镇的时间,
(单位:
)表示此人将船停在海岸处距
点的距离.经过计算将船停在海岸处某地,可使从小岛到城镇所花时间最短,则这个最短时间是
__________
.
同类题2
甲、乙两地相距
S
千米,汽车从甲地匀速行驶到乙地,速度不得超过
c
千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度
v
(千米/时)的平方成正比、比例系数为
b
;固定部分为
a
元.
(1)把全程运输成本
y
(元)表示为速度
v
(千米/时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
同类题3
如图是一个半圆形湖面景点的平面示意图.已知
为直径,且
km,
为圆心,
为圆周上靠近
的一点,
为圆周上靠近
的一点,且
∥
.现在准备从
经过
到
建造一条观光路线,其中
到
是圆弧
,
到
是线段
.设
,观光路线总长为
.
(1)求
关于
的函数解析式,并指出该函数的定义域;
(2)求观光路线总长的最大值.
同类题4
如图①,一条宽为1
的两平行河岸有村庄
和供电站
,村庄
与
的直线距离都是2
,
与河岸垂直,垂足为
.现要修建电缆,从供电站
向村庄
供电.修建地下电缆、水下电缆的费用分别是2万元
、4万元
.
(1)已知村庄
A
与
B
原来铺设有旧电缆,但旧电缆需要改造,改造费用是0.5万元
.现决定利用此段旧电缆修建供电线路,并要求水下电缆长度最短,试求该方案总施工费用的最小值;
(2)如图②,点
E
在线段
上,且铺设电缆的线路为
.若
,试用
表示出总施工费用
(万元)的解析式,并求
的最小值.
同类题5
某公园准备建一个摩天轮,摩天轮的外围是一个周长为
米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连.经预算,摩天轮上的每个座位与支点相连的钢管的费用为
元/根,且当两相邻的座位之间的圆弧长为
米时,相邻两座位之间的钢管和其中一个座位的总费用为
元,假设座位等距离分布,且至少有四个座位,
所有座位都视为点,且不考虑其他因素,记摩天轮的总造价为
元.
(Ⅰ)试写出
关于
的函数关系式,并写出定义域;
(Ⅱ)当
米时,试确定座位的个数,使得总造价最低
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
成本最小问题