刷题首页
题库
高中数学
题干
园林管理处拟在公园某区域规划建设一半径为
米,圆心角为
(弧度)的扇形观景水池,其中
,
为扇形
的圆心,同时紧贴水池周边(即:
和
所对的圆弧)建设一圈理想的无宽度步道.要求总预算费用不超过24万元,水池造价为每平方米400元,步道造价为每米1000元.
(1)若总费用恰好为24万元,则当
和
分别为多少时,可使得水池面积最大,并求出最大面积;
(2)若要求步道长为105米,则可设计出的水池最大面积是多少?
上一题
下一题
0.99难度 解答题 更新时间:2018-01-10 07:53:05
答案(点此获取答案解析)
同类题1
如图,在矩形
与扇形
拼接而成的平面图形中,
,
,
.点
在弧
上,
在
上,
.设
,则当平面区域
(阴影部份)的面积取到最大值时,
_______.
同类题2
某地兴建一休闲商业广场,欲在如图所示的一块不规则用地规划建成一个矩形的商业楼区,余下作为休闲区域,已知
,且AB=BC=2AO=4km,曲线段OC是以O为顶点且开口向上的抛物线的一段,如果要使矩形的相邻两边分别落在AB、BC上,且一个顶点落在曲线段OC上,应如何规划才能使矩形商业楼区的用地面积最大?
同类题3
如图,有一块半圆形的空地,政府计划在空地上建一个矩形的市民活动广场ABCD及矩形的停车场EFGH,剩余的地方进行绿化,其中半圆的圆心为O,半径为r,矩形的一边AB在直径上,点C,D,G,H在圆周上,E,F在边CD上,且∠BOG=60°,设∠BOC=
.
(1)记市民活动广场及停车场的占地总面积为
,求
的表达式;
(2)当cos
为何值时,可使市民活动广场及停车场的占地总面积最大.
同类题4
如图,以两条互相垂直的公路所在直线分别为x轴,y轴建立平面直角坐标系,公路附近有一居民区EFG和一风景区,其中
单位:百米
,
,风景区的部分边界为曲线C,曲线C的方程为
,拟在居民和风景区间辟出一个三角形区域EMN用于工作人员办公,点M,N分别在x轴和EF上,且MN与曲线C相切于P点.
设P点的横坐标为t,写出
面积的函数表达式
;
当t为何值时,
面积最小?并求出最小面积.
同类题5
正三棱柱体积为
,则其表面积最小时,底面边长为( )
A.
B.
C.
D.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题