刷题首页
题库
高中数学
题干
设
.
(1)若直线
与和
和
图象均相切,求直线
的方程;
(2)是否存在
使得
按某种顺序组成等差数列?若存在,这样的
有几个?若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-01-16 07:43:45
答案(点此获取答案解析)
同类题1
设曲线
(
为自然对数的底数)上任意一点处的切线为
,曲线
上任意一点处的切线为
,若对任意位置的
总存在
,使得
,则实数
的取值范围为( )
A.
B.
C.
D.
同类题2
若存在
使不等式
成立,则实数
的范围为
A.
B.
C.
D.
同类题3
已知函数
.
(
)若曲线
与直线
相切于点
,求点
的坐标.
(
)令
,当
时,求
的单调区间.
(
)当
,证明:当
,
.
同类题4
已知定义在
上的函数
和
分别满足
,
,则下列不等式恒成立的是( )
A.
B.
C.
D.
同类题5
设函数
f
(
x
)
=a
ln
x+
(e为自然对数的底数)
.
(1)当
a>
0时,求函数
f
(
x
)的极值;
(2)若不等式
f
(
x
)
<
0在区间(0,e
2
内有解,求实数
a
的取值范围
.
相关知识点
函数与导数
导数及其应用
导数的综合应用
导数在函数中的其他应用
利用导数研究能成立问题