刷题首页
题库
高中数学
题干
已知正四棱锥的侧棱长为
,那么当该棱锥体积最大时,它的高为( )
A.1
B.
C.2
D.3
上一题
下一题
0.99难度 单选题 更新时间:2018-10-05 08:08:30
答案(点此获取答案解析)
同类题1
现需要设计一个仓库,由上下两部分组成,上部的形状是正四棱锥
,下部的形状是正四棱柱
(如图所示),并要求正四棱柱的高
是正四棱锥的高
的4倍.
(1)若
,
,则仓库的容积是多少?
(2)若正四棱锥的侧棱长为
,当
为多少时,下部的正四棱柱侧面积最大,最大面积是多少?
同类题2
如图所示的某种容器的体积为
,它是由圆锥和圆柱两部分连结而成的,圆柱与圆锥的底面圆半径都为
.圆锥的高为
,母线与底面所成的角为
;圆柱的高为
.已知圆柱底面造价为
元
,圆柱侧面造价为
元
,圆锥侧面造价为
元
.
(1)将圆柱的高
表示为底面圆半径
的函数,并求出定义域;
(2)当容器造价最低时,圆柱的底面圆半径
为多少?
同类题3
如图,圆柱体木材的横截面
半径
为
,从该木材中截取一段圆柱体,再加工制作成直四棱柱
,该四棱柱的上、下底面均为等腰梯形,分别内接于圆柱的上、下底面,下底面圆的圆心
在梯形
内部,
,
,
,设
.
(1)求梯形
的面积;
(2)当
取何值时,直四棱柱
的体积最大?并求出最大值(注:木材的长度足够长)
同类题4
已知球的直径为
d
,求当其内接正四棱柱体积最大时,正四棱柱的高为多少?
同类题5
传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在弯形时永远保持为圆柱体,其底面半径原为
且以每秒
等速率缩短,而长度以每秒
等速率增长.已知神针的底面半径只能从
缩到
为止,且知在这段变形过程中,当底面半径为
时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为__________
.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题