刷题首页
题库
高中数学
题干
某莲藕种植塘每年的固定成本是1万元,每年最大规模的种植量是8万斤,每种植一斤藕,成本增加0.5元.如果销售额函数是
(
是莲藕种植量,单位:万斤;销售额的单位:万元,
是常数),若种植2万斤,利润是2.5万元,则要使利润最大,每年需种植莲藕( )
A.6万斤
B.8万斤
C.3万斤
D.5万斤
上一题
下一题
0.99难度 单选题 更新时间:2019-06-17 05:20:41
答案(点此获取答案解析)
同类题1
已知某服装厂生产某种品牌的衣服,销售量
(单位:百件)关于每件衣服的利润
(单位:
元)的函数解析式为
, 则当该服装厂所获效益最大时,
A.20
B.60
C.80
D.40
同类题2
某电子公司开发一种智能手机的配件,每个配件的成本是15元,销售价是20元,月平均销售
件,通过改进工艺,每个配件的成本不变,质量和技术含金量提高,市场分析的结果表明,如果每个配件的销售价提高的百分率为
,那么月平均销售量减少的百分率为
,记改进工艺后电子公司销售该配件的月平均利润是
(元).
(1)写出
与
的函数关系式;
(2)改进工艺后,试确定该智能手机配件的售价,使电子公司销售该配件的月平均利润最大.
同类题3
根据市场调查,某型号的空气净化器有如下的统计规律,每生产该型号空气净化器
(百台),其总成本为
(万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本),销售收入
(万元)满足
,假定该产品销售平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(Ⅰ)求利润函数
的解析式(利润=销售收入-总成本);
(Ⅱ)假定你是工厂老板,你该如何决定该产品生产的数量?
同类题4
如图,有一块半径为20米,圆心角
的扇形展示台,展示台分成了四个区域:三角形
,弓形
,扇形
和扇形
(其中
).某次菊花展依次在这四个区域摆放:泥金香、紫龙卧雪、朱砂红霜、朱砂红霜.预计这三种菊花展示带来的日效益分别是:泥金香50元/米
,紫龙卧雪30元/米
,朱砂红霜40元/米
.
(1)设
,试建立日效益总量
关于
的函数关系式;
(2)试探求
为何值时,日效益总量达到最大值.
同类题5
2015年推出一种新型家用轿车,购买时费用为16.9万元,每年应交付保险费、养路费及汽油费共1.2万元,汽车的维修费为:第一年无维修费用,第二年为0.2万元,从第三年起,每年的维修费均比上一年增加0.2万元.
(I)设该辆轿车使用
n
年的总费用(包括购买费用、保险费、养路费、汽油费及维修费)为
f
(
n
),求
f
(
n
)的表达式;
(II)这种汽车使用多少报废最合算(即该车使用多少年,年平均费用最少)?
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
利润最大问题