刷题宝
  • 刷题首页
题库 高中数学

题干

设函数.
(I)时,求函数的增区间.
(II)当时,求函数在区间上的最小值.
上一题 下一题 0.99难度 解答题 更新时间:2018-01-05 12:56:31

答案(点此获取答案解析)

同类题1

已知函数 ,且 .
(Ⅰ)设 ,求的单调区间及极值;
(Ⅱ)证明:函数的图象在函数的图象的上方.

同类题2

已知函数(,是自然对数的底数).
(1)若函数在点处的切线方程为,试确定函数的单调区间;
(2)①当,时,若对于任意,都有恒成立,求实数的最小值;②当时,设函数,是否存在实数,使得?若存在,求出的取值范围;若不存在,说明理由.

同类题3

已知函数在处的切线方程为.
(Ⅰ)求的单调区间:
(Ⅱ)关于的方程在范围内有两个解,求的取值范围.

同类题4

.已知函数的图象过点,且在点处的切线与直线垂直.
(1)若,试求函数的单调区间;
(2)若且是的单调递增区间,试求的范围

同类题5

已知函数,其中为常数且.
(1)当时,求曲线在点处的切线方程;
(2)讨论函数的单调性;
(3)当时,,若存在,使成立,求实数的取值范围.
相关知识点
  • 函数与导数
  • 导数及其应用
  • 导数在研究函数中的作用
  • 利用导数研究函数的单调性
  • 利用导数求函数的单调区间
  • 函数单调性、极值与最值的综合应用
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)