刷题首页
题库
高中数学
题干
已知函数
(Ⅰ)求函数
的单调区间;
(Ⅱ)证明当
时,关于
的不等式
恒成立;
上一题
下一题
0.99难度 解答题 更新时间:2018-01-08 02:27:34
答案(点此获取答案解析)
同类题1
已知函数
(
是自然对数的底数).
(1)当
时,求函数在
上的最大值和最小值;
(2)当
时,讨论函数
的单调性.
同类题2
已知函数
(Ⅰ)求
的单调区间;
(Ⅱ)若
,
,求
的取值范围.
同类题3
已知函数
在
与
时都取得极值.
(1)求
的值;
(2)求函数
的单调区间.
同类题4
已知函数
(其中
).
(1)讨论
的单调性;
(2)若对任意的
,关于
的不等式
恒成立,求
的取值范围.
同类题5
已知函数
.
(1)求函数y=g(x)的图象在
处的切线方程;
(2)求y=g(x)的最大值;
(3)令f(x)=ax
2
+bx﹣x•(g(x))(a,b∈R).若a≥0,求f(x)的单调区间.
相关知识点
函数与导数
导数及其应用
导数在研究函数中的作用
利用导数研究函数的单调性
利用导数求函数的单调区间
利用导数研究不等式恒成立问题