刷题首页
题库
高中数学
题干
某种商品进价为4元/件,当日均零售价为6元/件,日均销售100件,当单价每增加1元,日均销量减少10件,试计算该商品在销售过程中,若每天固定成本为20元,则预计单价为________元/件时,利润最大.
上一题
下一题
0.99难度 填空题 更新时间:2019-12-10 09:40:11
答案(点此获取答案解析)
同类题1
用
长的铁线围成一个扇形,应怎样设计才能使扇形的面积最大,最大面积是多少?
同类题2
某企业今年初用72万元购买一套新设备用于生产,该设备第一年需各种费用12万元,从第二年起,每年所需费用均比上一年增加4万元,该设备每年的总收入为50万元,设生产x年的 盈利总额为y万元.写出y与x的关系式;
①经过几年生产,盈利总额达到最大值?最大值为多少?
②经过几年生产,年平均盈利达到最大值?最大值为多少
同类题3
某商店已按每件80元的成本购进某商品1 000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件________元.
同类题4
据市场分析,广饶县驰中集团某蔬菜加工点,当月产量在10吨至25吨时,月生产总成本
(万元)可以看成月产量
(吨)的二次函数.当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元.
(1)写出月总成本
(万元)关于月产量
(吨)的函数关系;
(2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润;
(3)当月产量为多少吨时, 每吨平均成本最低,最低成本是多少万元?
同类题5
某产品按质量分10个档次,生产最低档次的利润是8元/件;每提高一个档次,利润每件增加2元,每提高一个档次,产量减少3件,在相同时间内,最低档次的产品可生产60件.问:在相同时间内,生产第几档次的产品可获得最大利润?(最低档次为第一档次)
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
利用二次函数模型解决实际问题