刷题首页
题库
高中数学
题干
定义在R上的函数f(x)满足:如果对任意x
1
,x
2
∈R,都有
,则称f(x)是R上凹函数.已知二次函数f(x)=
x
2
+x(
∈R,且
≠0).
(1)求证:当
>0时,函数f(x)的凹函数;
(2)如果x∈[0,1]时,|f(x)|≤1,试求
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2011-12-07 05:56:48
答案(点此获取答案解析)
同类题1
若函数
的最小值为1,则实数
_________
同类题2
已知函数
是
上的奇函数,
.
(1)求
的值;
(2)记
在
上的最大值为
,若对任意的
,
恒成立,求
的取值范围.
同类题3
若函数
y
=
f
(
x
)对定义域的每一个值
x
1
,在其定义域均存在唯一的
x
2
,满足
f
(
x
1
)
f
(
x
2
)=1,则称该函数为“依赖函数”.
(1)判断
,
y
=2
x
是否为“依赖函数”;
(2)若函数
y
=
a
+
sinx
(
a
>1),
为依赖函数,求
a
的值,并给出证明.
同类题4
已知函数
在区间
上的最大值是10,则实数
的取值范围是_________.
同类题5
若函数
在区间
上的最大值与最小值的差为
,则实数
的值为________.
相关知识点
函数与导数
函数及其性质
函数的基本性质
函数的最值
根据函数的最值求参数