刷题宝
  • 刷题首页
题库 高中数学

题干

用单调性的定义证明:函数在区间上是减函数.
上一题 下一题 0.99难度 解答题 更新时间:2017-10-16 10:10:14

答案(点此获取答案解析)

同类题1

已知函数.
(1)用定义证明:在上是增函数;
(2)求在上的值域.

同类题2

已知函数(a>1).
(1)判断函数f (x)的奇偶性;
(2)求f (x)的值域;
(3)证明f (x)在(-∞,+∞)上是增函数.

同类题3

已知定义在区间上的函数为奇函数.
(1)求实数的值;
(2)判断并证明函数在区间上的单调性;
(3)解关于的不等式.

同类题4

函数是定义在上的奇函数,且.
(1)确定的解析式;
(2)判断在上的单调性,并用定义证明;
(3)解关于的不等式.

同类题5

设函数, 是整数集.给出以下四个命题:①;②是上的偶函数;③若,则;④是周期函数,且最小正周期是.请写出所有正确命题的序号______________________.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)