刷题宝
  • 刷题首页
题库 高中数学

题干

已知,∈[1,+∞).
(1)当时,判断函数的单调性并证明;
(2)当时,求函数的最小值;
(3)若对任意∈[1,+∞),>0恒成立,试求实数的取值范围.
上一题 下一题 0.99难度 解答题 更新时间:2017-08-30 09:07:21

答案(点此获取答案解析)

同类题1

若函数,且.
(1)求的值,写出的表达式;
(2)用定义证明在上是增函数.

同类题2

已知函数.
(1)对任意恒成立,求实数的取值范围:
(2)函数,设函数,若函数有且只有两个零点,求实数的取值范围.

同类题3

设,则是(  )
A.奇函数,且在上是增函数B.奇函数,且在上是减函数
C.有零点,且在上是减函数D.没有零点,且是奇函数

同类题4

如图,正方形ABCD的边长为2,O为AD的中点,射线OP从OA出发,绕着点O顺时针方向旋转至OD,在旋转的过程中,记为OP所经过的在正方形ABCD内的区域(阴影部分)的面积,那么对于函数有以下三个结论:
①;
②任意,都有;
③任意且,都有.
其中正确结论的序号是__________. (把所有正确结论的序号都填上).

同类题5

已知函数,.
(1)求证:函数在上是单调增函数;
(2)判断函数的奇偶性,并说明理由;
(3)若方程有实数解,求实数的取值范围.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 利用函数单调性求最值
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)