刷题宝
  • 刷题首页
题库 高中数学

题干

集合由满足以下性质的函数组成:①在上是增函数;②对于任意的,.已知函数,.
(1)试判断,是否属于集合,并说明理由;
(2)将(1)中你认为属于集合的函数记为.
(ⅰ)试用列举法表示集合;
(ⅱ)若函数在区间上的值域为,求实数 的取值范围.
上一题 下一题 0.99难度 解答题 更新时间:2018-03-08 09:05:29

答案(点此获取答案解析)

同类题1

函数在上是减函数,则a的取值范围是(   )
A.B.C.D.

同类题2

已知定义域为的函数满足,当时,,设在上的最大值为,且的前项和为,若对任意的正整数均成立,则实数的取值范围为(  )
A.B.C.D.

同类题3

数学老师给出一个函数,甲、乙、丙、丁四个同学各说出了这个函数的一条性质:甲:在 上函数单调递减;乙:在上函数单调递增;丙:在定义域R上函数的图象关于直线对称;丁:不是函数的最小值.老师说:你们四个同学中恰好有三个人说的正确.那么,你认为____说的是错误的.

同类题4

已知函数,若数列的前n项和,且,则( )
A.1009B.C.0D.2018

同类题5

. 已知集合,有下列命题
①若 则;
②若则;
③若则的图象关于原点对称;
④若则对于任意不等的实数,总有成立.
其中所有正确命题的序号是   
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数单调性的应用
  • 根据函数的最值求参数
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)