刷题宝
  • 刷题首页
题库 高中数学

题干

已知函数的定义域为,对于给定的,若存在,使得函数满足:
① 函数在上是单调函数;
② 函数在上的值域是,则称是函数的级“理想区间”.
(1)判断函数,是否存在1级“理想区间”. 若存在,请写出它的“理想区间”;(只需直接写出结果)
(2) 证明:函数存在3级“理想区间”;()
(3)设函数,,若函数存在级“理想区间”,求的值.
上一题 下一题 0.99难度 解答题 更新时间:2019-02-15 05:10:18

答案(点此获取答案解析)

同类题1

设是实数,已知奇函数,
(1)求的值;
(2)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0有解,求k的取值范围.

同类题2

已知函数.
(1)判断并证明函数的奇偶性;
(2)判断当时函数的单调性,并用定义证明;
(3)若定义域为,解不等式.

同类题3

已知函数f(x)的定义域是{x|x≠0},对定义域内的任意,都有f(·)=f()+f(),且当x>1时,f(x)>0,f(2)=1.
(1)证明:(x)是偶函数;
(2)证明:(x)在(0,+∞)上是增函数;
(3)解不等式(2-1)<2.

同类题4

已知时,函数,对任意实数都有,且,当时,
(1)判断的奇偶性;
(2)判断在上的单调性,并给出证明;
(3)若且,求的取值范围.

同类题5

函数,若对恒成立,则实数的取值范围是_____.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 函数单调性的应用
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)