刷题首页
题库
高中数学
题干
已知函数
的定义域为
,对于给定的
,若存在
,使得函数
满足:
① 函数
在
上是单调函数;
② 函数
在
上的值域是
,则称
是函数
的
级“理想区间”.
(1)判断函数
,
是否存在1级“理想区间”. 若存在,请写出它的“理想区间”;(只需直接写出结果)
(2) 证明:函数
存在3级“理想区间”;(
)
(3)设函数
,
,若函数
存在
级“理想区间”,求
的值.
上一题
下一题
0.99难度 解答题 更新时间:2019-02-15 05:10:18
答案(点此获取答案解析)
同类题1
设
是实数,已知奇函数
,
(1)求
的值;
(2)若对任意的t∈R,不等式f(t
2
﹣2t)+f(2t
2
﹣k)<0有解,求k的取值范围.
同类题2
已知函数
.
(1)判断并证明函数
的奇偶性;
(2)判断当
时函数
的单调性,并用定义证明;
(3)若
定义域为
,解不等式
.
同类题3
已知函数f(x)的定义域是{x|x≠0},对定义域内的任意
,
都有f(
·
)=f(
)+f(
),且当x>1时,f(x)>0,f(2)=1.
(1)证明:
(x)是偶函数;
(2)证明:
(x)在(0,+∞)上是增函数;
(3)解不等式
(2
-1)<2.
同类题4
已知
时,函数
,对任意实数
都有
,且
,当
时,
(1)判断
的奇偶性;
(2)判断
在
上的单调性,并给出证明;
(3)若
且
,求
的取值范围.
同类题5
函数
,若
对
恒成立,则实数
的取值范围是
_____
.
相关知识点
函数与导数
函数及其性质
函数的基本性质
函数的单调性
函数单调性的应用