刷题首页
题库
高中数学
题干
已知函数
.
判断并证明
在
上的单调性;
若存在
使得
在
上的值域为
求实数
a
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2018-12-03 07:18:24
答案(点此获取答案解析)
同类题1
已知
是有界函数,即存在
使得
恒成立.
(1)若
是有界函数,则
是否是有界函数?说明理由;
(2)判断
是否是有界函数?
(3)有界函数
满足
是否是周期函数,请说明理由.
同类题2
已知函数
.
(1)判断函数
在区间
上的单调性,并用定义证明其结论;
(2)求函数
在区间
上的最大值与最小值.
同类题3
设函数
y
=
f
(
x
)的定义域为R,并且满足
f
(
x
+
y
)=
f
(
x
)+
f
(
y
),
f
(
)=1,当
x
>0时,
f
(
x
)>0.
(1)求
f
(0)的值;
(2)判断函数的奇偶性;
(3)如果
f
(
x
)+
f
(2+
x
)<2,求
x
的取值范围.
同类题4
定义在
上的偶函数
满足:对任意的
,都有
,且
,则不等式
的解集是_______.
同类题5
已知函数
,
,且
.
(1)判断
的奇偶性;
(2)讨论
的单调性.
相关知识点
函数与导数
函数及其性质
函数的基本性质
函数的单调性
定义法判断函数的单调性
指数函数最值与不等式的综合问题