刷题宝
  • 刷题首页
题库 高中数学

题干

   已知f(x)=,x∈(-2,2).

(1) 判断f(x)的奇偶性并说明理由;

(2) 求证:函数f(x)在(-2,2)上是增函数;

(3) 若f(2+a)+f(1-2a)>0,求实数a的取值范围.

上一题 下一题 0.99难度 解答题 更新时间:2019-11-20 09:09:12

答案(点此获取答案解析)

同类题1

已知函数.
(1)判断函数在上的单调性并证明;
(2)判断函数的奇偶性,并求在区间上的最大值与最小值.

同类题2

已知对任意x.y∈R,都有f(x+y)=f(x)+f(y)﹣t(t为常数)并且当x>0时,f(x)<t
(1)求证:f(x)是R上的减函数;
(2)若f(4)=﹣t﹣4,解关于m的不等式f(m2﹣m)+2>0.

同类题3

已知f(x)是定义在R上的恒不为零的函数,且对任意的x,y都满足:
(1)求f(0)的值,并证明对任意的,都有;
(2)设当时,都有,证明:f(x)在上是减函数.

同类题4

已知函数.
判断函数的奇偶性并加以证明;
判断函数在上的单调性,并用定义法加以证明.

同类题5

若函数,则 (   )
A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数
C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 函数单调性的应用
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)