刷题宝
  • 刷题首页
题库 高中数学

题干

已知函数,实数且.
(1)设,判断函数在上的单调性,并说明理由;
(2)设且时,的定义域和值域都是,求的最大值;
(3)若不等式对恒成立,求的范围.
上一题 下一题 0.99难度 解答题 更新时间:2020-02-09 12:47:26

答案(点此获取答案解析)

同类题1

已知.
(1)判断函数的奇偶性,并说明理由;
(2)判断函数的单调性,并给予证明.

同类题2

已知函数.
(Ⅰ)判断并证明的单调性;
(Ⅱ)是否存在实数,使函数为奇函数?证明你的结论;
(Ⅲ)在(Ⅱ)的条件下,当时,恒成立,求实数的取值范围.

同类题3

已知函数是奇函数.
(1)求的值;
(2)用定义证明:函数是上的增函数;
(3)若对一切实数满足,求实数的范围.

同类题4

已知函数的图象过点.
(1)求的值;
(2)试判断函数在上的单调性,并给予证明

同类题5

函数的定义域关于原点对称,但不包括数0,对定义域中的任意实数,在定义域中存在使,,且满足以下3个条件:
(1)是定义域中的数,,则;
(2),(是一个正的常数);
(3)当时,.
证明:(1)是奇函数;
(2)是周期函数,并求出其周期;
(3)在内为减函数.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 利用函数单调性求最值
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)