刷题宝
  • 刷题首页
题库 高中数学

题干

(本小题满分15分)已知函数,.
(1)用定义证明:不论为何实数在上为增函数;
(2)若为奇函数,求的值;
(3)在(2)的条件下,求在区间[1,5]上的最小值.
上一题 下一题 0.99难度 解答题 更新时间:2019-12-30 10:51:38

答案(点此获取答案解析)

同类题1

已知函数.
(1)求方程的根;
(2)求证:在上是增函数;
(3)若对于任意,不等式恒成立,求实数的最小值.

同类题2

下列函数为奇函数,且在(-,0)上单调递减的是(   )
A.B.C.D.

同类题3

已知函数.
(1)证明:不论为何实数总为增函数
(2)确定的值, 使为奇函数;
(3)当为奇函数时, 求的值域.

同类题4

关于函数.有下列三个结论:①的值域为;②是上的增函数;③的图像是中心对称图形,其中所有正确命题的序号是_______;

同类题5

已知是定义在上的奇函数,且,若,时,有成立.
(1)判断在上的单调性,并证明;
(2)解不等式;
(3)若对所有的恒成立,求实数的取值范围.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 利用函数单调性求最值
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)