刷题宝
  • 刷题首页
题库 高中数学

题干

设二次函数满足我们的:
①当时,的最大值为0,且成立;
②二次函数的图象与直线交于两点,且.
(1)求的解析式;
(2)求最小的实数,使得存在实数,只要当时,就有成立.
上一题 下一题 0.99难度 解答题 更新时间:2020-01-11 05:57:11

答案(点此获取答案解析)

同类题1

已知函数为二次函数,不等式的解集是,且在区间上的最大值为12.
(1)求的解析式;
(2)设函数在上的最小值为,求的表达式及的最小值.

同类题2

已知二次函数有最小值,且,若在区间不单调,则实数的取值范围是( )
A.B.C.D.

同类题3

已知函数,其中,且.
(1)若函数的图像过点,且函数只有一个零点,求函数的解析式;
(2)在(1)的条件下,若,函数在区间上单调递增,求实数的取值范围.

同类题4

已知二次函数满足,且,.
(1)求的解析式;
(2)是否存在实数,使得在上的图象恒在曲线的上方?若存在,求出的取值范围;若不存在,说明理由.

同类题5

已知二次函数.
(1)若,试判断函数零点个数;
(2)是否存在,使同时满足以下条件:
①对任意,且;
②对任意,都有.若存在,求出的值,若不存在,请说明理由;
(3)若对任意且,,试证明存在,使成立.
相关知识点
  • 函数与导数
  • 一次函数与二次函数
  • 二次函数的概念
  • 求二次函数的解析式
  • 一元二次不等式在某区间上的恒成立问题
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)