四个电子宠物排座位,一开始,小鼠、小猴、小兔、小猫分别坐在1、2、3、4号座位上(如图所示),以后它们不停地变换位置,第一次上下两排交换,第二次是在第一次换位后,再左右两列交换位置,第三次上下两排交换,第四次再左右两列交换…这样一直下去,则第2017次交换位置后,小兔子坐在( )号位上.


A.1 | B.2 | C.3 | D.4 |
阅读与应用:
阅读1:a、b为实数,且a>0,b>0,因为
,所以
,从而
(当a=b时取等号).
阅读2:函数
(常数m>0,x>0),由阅读1结论可知:
,所以当
即
时,函数
的最小值为
.
阅读理解上述内容,解答下列问题:
问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为
,周长为
,求当x=__________时,周长的最小值为__________.
问题2:已知函数y1=x+1(x>-1)与函数y2=x2+2x+17(x>-1),当x=__________时,
的最小值为__________.
问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)
阅读1:a、b为实数,且a>0,b>0,因为



阅读2:函数







阅读理解上述内容,解答下列问题:
问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为


问题2:已知函数y1=x+1(x>-1)与函数y2=x2+2x+17(x>-1),当x=__________时,

问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.01.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)
如图为手的示意图,大拇指、食指、中指、无名指、小指分别标记为字母A,B,C,D,E,请按A→B→C→D→E→D→C→B→A→B→C→…的规律,从A开始数连续的正整数1,2,3,4,…,当数2018时,对应的手指字母为_____ .

类比一元一次方程的定义,观察下列给出的方程,找出它们的共同特征,试给出名称,并写出定义.
x3+x2-3x+4=0;x3+x-1=0;x3-2x2+3=x;y3+2y2-5y-1=0.
x3+x2-3x+4=0;x3+x-1=0;x3-2x2+3=x;y3+2y2-5y-1=0.
对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.
我们把分子为1的分数叫做理想分数,如
,
,
,…,任何一个理想分数都可以写成两个不同理想分数的和,如
=
+
,
=
+
,
=
+
,…,根据对上述式子的观察,请你思考:如果理想分数
=
+
(n是不小于2的整数,且a<b),那么b﹣a=____ (用含n的式子表示)















某班选举班干部,全班有40名同学都有选举权和被选举权,他们的编号分别为1,2,…,40.老师规定:同意某同学当选的记“1”,不同意(含弃权)的记“0”.
如果令
其中i=1,2,…,40;j=1,2,…,40.则a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a40,1a40,2表示的实际意义是( )
如果令

其中i=1,2,…,40;j=1,2,…,40.则a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a40,1a40,2表示的实际意义是( )
A.同意第1号或者第2号同学当选的人数 |
B.同时同意第1号和第2号同学当选的人数 |
C.不同意第1号或者第2号同学当选的人数 |
D.不同意第1号和第2号同学当选的人数 |
身份证号码告诉我们很多信息,某人的身份证号码是130503196104010012,其中13、05、03是此人所属的省(市、自治区)、市、县(市、区)的编码,1961、04、01是此人出生的年、月、日,001是顺序码,2为校验码.那么身份证号码是321084198101208022的人的生日是( )
A.8月10日 | B.10月12日 | C.1月20日 | D.12月8日 |