四个电子宠物排座位,一开始,小鼠、小猴、老虎、小猫分别坐在1、2、3、4号座位上,以后它们不停地变换位置,第一次上下两排交换,第二次是在第一次换位后,再左右两列交换位置,第三次再上下两排交换,第四次再左右两列交换……这样一直下去,则第12次交换位置后,老虎所在的号位是

……

……
A.1 | B.2 | C.3 | D.4 |
(阅读理解)对于任意正实数a、b,∵(
-
)2≥0,∴a+b-2
≥0,
∴a+b≥2
,只有当a=b时,等号成立.
(数学认识)在a+b≥2
(a、b均为正实数)中,若ab为定值k,则a+b≥2
,只有当a=b时,a+b有最小值2
(解决问题)
(1)若x>0时,x+
有最小值为 ,此时x= ;

(2)如上图,已知点A在反比例函数y
(x>0)的图像上,点B在反比例函数y
(x>0)的图像上,AB∥y轴,过点A作AD⊥y轴于点 D,过点B作BC⊥y轴于点C.求四边形ABCD周长的最小值
(3)学校准备在图书馆后面的场地上建一个面积为100平方米的长方形自行车棚.图书馆的后墙只有5米长可以利用,其余部分由铁围栏建成,如下图是小尧同学设计的图纸,设所需铁围栏L米,自行车棚长为x米.L是否存在最小值,如果存在,那么当x为何值时,L最小,最小为多少米?如果不存在,请说明理由.



∴a+b≥2

(数学认识)在a+b≥2



(解决问题)
(1)若x>0时,x+


(2)如上图,已知点A在反比例函数y


(3)学校准备在图书馆后面的场地上建一个面积为100平方米的长方形自行车棚.图书馆的后墙只有5米长可以利用,其余部分由铁围栏建成,如下图是小尧同学设计的图纸,设所需铁围栏L米,自行车棚长为x米.L是否存在最小值,如果存在,那么当x为何值时,L最小,最小为多少米?如果不存在,请说明理由.

因为到点
和点
距离相等的点表示的数是
,有这样的关系
,那么到点
和到点
距离相等的数是 ;到点
距离相等的点表示的数是 ;到点
和点
距离相等的点表示的数是 ;









把几个数用大括号围起来,中间用逗号断开,如:{1,2,﹣3}、{﹣2,7,
,19},我们称之为集合,其中的数称其为集合的元素,一个给定集合中的元
素是互不相同的.
(1)类比有理数加法运算,集合也可以“相加”.定义:集合 A 与集合 B 中的所 有元素组成的集合称为集合 A 与集合 B 的和,记为 A+
(2)如果一个集合满足:当有理数 a 是集合的元素时,有理数 6﹣a 也必是这 个集合的元素,这样的集合我们称为好的集合.
①请你判断集合{1,2},{﹣2,1,3,5,8}是不是好的集合?
②请你写出满足条件的两个好的集合的例子.

素是互不相同的.
(1)类比有理数加法运算,集合也可以“相加”.定义:集合 A 与集合 B 中的所 有元素组成的集合称为集合 A 与集合 B 的和,记为 A+
A.如 A={2,﹣1},B={﹣ 1,4},则 A+B={2,﹣1,4}.现在 A={﹣2,0,1,5,7},B={﹣3,0,1,3,5},则 A+B= . |
①请你判断集合{1,2},{﹣2,1,3,5,8}是不是好的集合?
②请你写出满足条件的两个好的集合的例子.
我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i”,使其满足i2=-1(即方程x2=-1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i2)2=(-1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=(i4)n•i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1.那么i+i2+i3+i4+…+i2015+i2016+i2017的值为_______
阅读理解题:
定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.
例如计算:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i;
(1+i)×(2-i)=1×2-i+2×i-i2=2+(-1+2)i+1=3+i;
根据以上信息,完成下列问题:
(1)填空:i3= ,i4= ;
(2)计算:(1+i)×(3-4i);
(3)计算:i+i2+i3+…+i2018.
定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减,乘法运算与整式的加、减、乘法运算类似.
例如计算:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i;
(1+i)×(2-i)=1×2-i+2×i-i2=2+(-1+2)i+1=3+i;
根据以上信息,完成下列问题:
(1)填空:i3= ,i4= ;
(2)计算:(1+i)×(3-4i);
(3)计算:i+i2+i3+…+i2018.
根据阅读材料,解决问题.
数n是一个三位数,各数位上的数字互不相同,且都不为零,从它各数位上的数字中任选两个构成一个两位数,这样就可以得到六个不同的两位数,我们把这六个不同的两位数叫做数n的“生成数”.数n的所有“生成数”之和与22的商记为G(n),例如n=123,它的六个“生成数”是12,13,21,23,31,32,这六个“生成数”的和12+13+21+23+31+32=132,132÷22=6,所以G(123)=6.
(1)计算:G(125),G(746);
(2)数s,t是两个三位数,它们都有“生成数”,a,1,4分别是s的百位、十位、个位上的数字,x,y,6分别是t的百位、十位、个位上的数字,规定:k=
,若G(s)•G(t)=84,求k的最小值.
数n是一个三位数,各数位上的数字互不相同,且都不为零,从它各数位上的数字中任选两个构成一个两位数,这样就可以得到六个不同的两位数,我们把这六个不同的两位数叫做数n的“生成数”.数n的所有“生成数”之和与22的商记为G(n),例如n=123,它的六个“生成数”是12,13,21,23,31,32,这六个“生成数”的和12+13+21+23+31+32=132,132÷22=6,所以G(123)=6.
(1)计算:G(125),G(746);
(2)数s,t是两个三位数,它们都有“生成数”,a,1,4分别是s的百位、十位、个位上的数字,x,y,6分别是t的百位、十位、个位上的数字,规定:k=

求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法——更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也,以等数约之.”意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数:

两条平行线间的距离公式
一般地;两条平行线
间的距离公式
如:求:两条平行线
的距离.
解:将两方程中
的系数化成对应相等的形式,得
因此,
两条平行线
的距离是____________.
一般地;两条平行线


如:求:两条平行线

解:将两方程中


因此,

两条平行线
