- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 算术平均数
- 加权平均数
- 用计算器求平均数
- + 众数
- 求众数
- 已知一组数据的众数,求未知数据的值
- 运用众数做决策
- 统计量的选择
- 观察、猜想与证明
- 实践与应用(暂存)
某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:
那么20名学生决赛成绩的众数和中位数分别是( )
决赛成绩/分 | 95 | 90 | 85 | 80 |
人数 | 4 | 6 | 8 | 2 |
那么20名学生决赛成绩的众数和中位数分别是( )
A.85,90 | B.85,87.5 | C.90,85 | D.95,90 |
某商场试销一种新款衬衫,一周内销售情况如下表所示:
商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )
型号(厘米) | 38 | 39 | 40 | 41 | 42 | 43 |
数量(件) | 25 | 30 | 36 | 50 | 28 | 8 |
商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )
A.平均数 | B.众数 | C.中位数 | D.方差 |
为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是( )
每周做家务的时间(小时) | 0 | 1 | 2 | 3 | 4 |
人数(人) | 2 | 2 | 3 | 1 | 1 |
A.3,2.5 | B.1,2 | C.3,3 | D.2,2 |
某百货商场试销一批新款衬衫,一周内销售情况如表所示。该商场经理想要了解哪种型号最畅销,那么他最关注的统计量是( )
型号 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
数量(件) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
A.众数 | B.中位数 | C.平均数 | D.方差 |
某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩与方差S2如表所示,如果要选择一个成绩高且发挥稳定的人参赛,则这个人应是( )
| 甲 | 乙 | 丙 | 丁 |
平均成绩 | 8 | 9 | 9 | 8 |
S2 | 1 | 1 | 1.2 | 1.3 |
A.甲 | B.乙 | C.丙 | D.丁 |
某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:
根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).
(1)这6名选手笔试成绩的中位数是________分,众数是________分;
(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;
(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.
序号 项目 | 1 | 2 | 3 | 4 | 5 | 6 |
笔试成绩/分 | 85 | 92 | 84 | 90 | 84 | 80 |
面试成绩/分 | 90 | 88 | 86 | 90 | 80 | 85 |
根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).
(1)这6名选手笔试成绩的中位数是________分,众数是________分;
(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;
(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.
有一组数据为88,96,109,109,122,141,则这组数据的众数和中位数分别是( )
A.122,109 | B.109,122 | C.109,109 | D.141,109 |
某商场为了统计某品牌运动鞋哪个号码卖得最好,则应关注该品牌运动鞋各号码销售数据的平均数、众数、中位数这三个数据中的_____________.
某校八年级师生为了响应“绿水青山就是金山银山”的号召,在今年3月的植树月活动中到某荒山植树,如图是抽查了其中20名师生植树棵数的统计图.

(1)求这20名师生种树棵数的平均数、众数、中位数;
(2)如果该校八年级共有师生500名,所植树的存活率是90%,估计所植的树共有多少棵存活?

(1)求这20名师生种树棵数的平均数、众数、中位数;
(2)如果该校八年级共有师生500名,所植树的存活率是90%,估计所植的树共有多少棵存活?