- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 求加权平均数
- 已知一组数据的加权平均数,求未知数据的值
- + 运用加权平均数做决策
- 出错情况下的平均数问题
- 观察、猜想与证明
- 实践与应用(暂存)
某公司要招聘一名新的大学生,公司对入围的甲、乙两名候选人进行了三项测试,成绩如表所示,根据实际需要,规定能力、技能、学业三项测试得分按5:3:2的比例确定个人的测试成绩,得分最高者被录取,此时______ 将被录取.
得分![]() | 能力 | 技能 | 学业 |
甲 | 95 | 84 | 61 |
乙 | 87 | 80 | 77 |
某公司需招聘一名员工,对应聘者甲、乙、丙、丁从笔试、面试两个方面进行量化考核.甲、乙、丙、丁两项得分如下表:(单位:分)
(1)这
名选手笔试成绩的中位数是____________分,面试的众数是_____________分;
(2)该公司规定:笔试、面试分别按
,
的比例计总分,请比较甲、乙的总分的大小.
| 甲 | 乙 | 丙 | 丁 |
笔试 | ![]() | ![]() | ![]() | ![]() |
面试 | ![]() | ![]() | ![]() | ![]() |
(1)这

(2)该公司规定:笔试、面试分别按


定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图.
(1)请将表和图中的空缺部分补充完整;
(2)图中B同学对应的扇形圆心角为 度;
(3)竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为 ,B同学得票数为 ,C同学得票数为 ;
(4)若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断 当选.(从A、B、C、选择一个填空)
| A | B | C |
笔试 | 85 | 95 | 90 |
口试 | | 80 | 85 |
(1)请将表和图中的空缺部分补充完整;
(2)图中B同学对应的扇形圆心角为 度;
(3)竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为 ,B同学得票数为 ,C同学得票数为 ;
(4)若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断 当选.(从A、B、C、选择一个填空)

国内名牌大学每年都会举办竞赛学科夏令营,选拔优秀的竞赛学生,已知某高校举办的夏令营考试,其综合成绩由三部分组成:基础笔试成绩占30%,竞赛笔试成绩占50%,面试成绩占20%,甲、乙两名学生成绩如下表:

则甲、乙两名学生中综合成绩更为优秀的是__________

则甲、乙两名学生中综合成绩更为优秀的是__________
某次数学测试中,八年级一班平均分为80分,八年级二班的平均分为82分,下列说法错误的是( )
A.两个班的平均分为81分 |
B.两个班的平均分不可能高于82分 |
C.若一班的人数比二班多,则两个班的平均分低于81分 |
D.若两个班的人数相同,则两个班的平均分为81分 |
某校举办“社会主义核心价值观”知识演讲比赛,8(1)班计划从甲、乙两位同学中选出一位参加学校的决赛,已知这两位在预赛中各项成绩如表图,且甲、乙两人预赛四项成绩的平均分相同.

(1)表中m的值为_________;
(2)把图中的统计图补充完整;
(3)若将演讲内容、语言表达、形象风度、现场效果四项得分按4∶3∶1∶2的比例确定两人的最终得分,并选择最终得分较高的同学作为代表参赛,那么谁将代表八(1)班参赛?请说明理由
项目 | 甲 | 乙 |
演讲内容 | 95 | m |
语言表达 | 90 | 85 |
形象风度 | 85 | m |
现场效果 | 90 | 95 |

(1)表中m的值为_________;
(2)把图中的统计图补充完整;
(3)若将演讲内容、语言表达、形象风度、现场效果四项得分按4∶3∶1∶2的比例确定两人的最终得分,并选择最终得分较高的同学作为代表参赛,那么谁将代表八(1)班参赛?请说明理由
某校有1500名学生,小明想了解全校学生每月课外阅读书籍的数量情况,随机抽取了部分学生,得到如统计图:

(1)一共抽查了多少人?
(2)每月课外阅读书籍数量是1本的学生对应的圆心角度数是多少?
(3)估计该校全体学生每月课外阅读书籍的总量大约是多少本?

(1)一共抽查了多少人?
(2)每月课外阅读书籍数量是1本的学生对应的圆心角度数是多少?
(3)估计该校全体学生每月课外阅读书籍的总量大约是多少本?
某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )
| 纸笔测试 | 实践能力 | 成长记录 |
甲 | 90 | 83 | 95 |
乙 | 98 | 90 | 95 |
丙 | 80 | 88 | 90 |
A.甲 | B.乙丙 | C.甲乙 | D.甲丙 |
某公司对应聘者A,B,进行面试,并按三个方面给应聘者打分,每方面满分20分,最后打分结果如下表,
根据实际需要,公司将专业知识、工作经验和仪表形象三项成绩得分按6:3:1的比例确定各人的成绩,此时谁将被录用?
| 专业知识 | 工作经验 | 仪表形象 |
A | 14 | 18 | 12 |
B | 18 | 16 | 11 |
根据实际需要,公司将专业知识、工作经验和仪表形象三项成绩得分按6:3:1的比例确定各人的成绩,此时谁将被录用?
我们约定:体重在选定标准的
%(包含)范围之内时都称为“一般体重”.为了解某校七年级男生中具有“一般体重”的人数,我们从该校七年级男生中随机选出10名男生,测量出他们的体重(单位:kg),收集并整理得到如下统计表:
根据以上表格信息解决如下问题:
(1)将这组数据的三个统计量:平均数、中位数和众数填入下表:
(2)请你选择其中一个统计量作为选定标准,说明选择的理由.并按此选定标准找出这10名男生中具有“一般体重”的男生.

男生序号 | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | ⑨ | ⑩ |
体重![]() | 45 | 62 | 55 | 58 | 67 | 80 | 53 | 65 | 60 | 55 |
根据以上表格信息解决如下问题:
(1)将这组数据的三个统计量:平均数、中位数和众数填入下表:
平均数 | 中位数 | 众数 |
| | |
(2)请你选择其中一个统计量作为选定标准,说明选择的理由.并按此选定标准找出这10名男生中具有“一般体重”的男生.