- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 利用勾股定理求梯子滑落高度
- 利用勾股定理求旗杆高度
- 利用勾股定理求小鸟飞行距离
- 利用勾股定理求大树折断前的高度
- 利用勾股定理解决水杯中筷子问题
- + 利用勾股定理解决航海问题
- 利用勾股定理求河宽
- 利用勾股定理求台阶上地毯长度
- 利用勾股定理判断汽车是否超速
- 利用勾股定理判断是否受台风影响
- 利用勾股定理选址使到两地距离相等
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知海岛A的周围6km的范围内有暗礁,一艘海轮在B处测得海岛A在北偏东30°的方向;向正北方向航行6km到达C处,又测得该岛在北偏东60°的方向,如果海轮不改变航向,继续向正北航行,有没有触礁的危险?

小东与哥哥同时从家中出发,小东以6km/时的速度向正北方向的学校走去,哥哥则以8km/时的速度向正东方向走去,半小时后,小东距哥哥多远?
小明同学先向北行进
千米,然后向东进
千米,再向北行进
千米,最后又向东行进一定距离,此时小明离出发点的距离是
千米,小明最后向东行进了()




A.3千米 | B.4千米 |
C.5千米 | D.6千米 |
如图,甲、乙两轮船于上午8时同时从码头O分别向北偏东32°和北偏西58°的方向出发,甲轮船的速度为10
海里/时,乙轮船的速度为10
海里/时,则下午1时两轮船相距多少海里?



中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=36海里,OB=12海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.
(1)请用直尺和圆规作出C处的位置;(不写作法,保留作图痕迹)
(2)求我国海监船行驶的航程BC的长.
(1)请用直尺和圆规作出C处的位置;(不写作法,保留作图痕迹)
(2)求我国海监船行驶的航程BC的长.

中日钓鱼岛争端持续,我国海监船加大钓鱼岛海域的巡航维权力度.如图,
,
海里,
海里,钓鱼岛位于
点,我国海监船在点
处发现有一不明国籍的渔船自
点出发沿着
方向匀速驶向钓鱼岛所在地点
,我国海监船立即从
处出发以相同的速度沿某直线去拦截这艘渔船,结果在点
处截住了渔船.

(1)请用直尺和圆规作出
处的位置.(不写作法,保留作图痕迹)
(2)求我国海监船行驶的航程
的长.











(1)请用直尺和圆规作出

(2)求我国海监船行驶的航程

在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲乙两艘巡逻艇立即从相距13海里的A、B两基地前去拦截,6分钟后同时到达C地成功将其拦截,已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,则甲巡逻艇航向为北偏东________°
如图,某海关缉私艇在点0处发现在正北方向30海里的A处有一艘可疑船只,测得它正以60海里∕时的速度向正东方航行,随即调整方向,以75海里∕时的速度准备在B处迎头拦截.经过_________小时能赶上。

一艘轮船以16km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口12km/h的速度向东南方向航行,它们离开港口1小时后相距__________km.