- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 利用勾股定理求梯子滑落高度
- 利用勾股定理求旗杆高度
- 利用勾股定理求小鸟飞行距离
- 利用勾股定理求大树折断前的高度
- 利用勾股定理解决水杯中筷子问题
- + 利用勾股定理解决航海问题
- 利用勾股定理求河宽
- 利用勾股定理求台阶上地毯长度
- 利用勾股定理判断汽车是否超速
- 利用勾股定理判断是否受台风影响
- 利用勾股定理选址使到两地距离相等
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
一只渔船在灯塔C的正西方向10海里的A处,以20海里/时的速度沿北偏东30°方向行驶.

(1)多长时间后,渔船距灯塔最近?
(2)多长时间后,渔船行驶到灯塔的正北方向?此时渔船距灯塔有多远?(其中:202-102=17.32)

(1)多长时间后,渔船距灯塔最近?
(2)多长时间后,渔船行驶到灯塔的正北方向?此时渔船距灯塔有多远?(其中:202-102=17.32)
如图,一客轮以16海里/时的速度从港口A出发向东北方向航行,另一客轮同时以12海里/时的速度从港口A出发向东南方向航行,离开港口2小时后,则两船相距( )


A.25海里 | B.30海里 | C.35海里 | D.40海里 |
一艘海监船从
点沿正北方向巡航,其航线距某岛屿(设
、
为该岛屿的东西两端点)最近距离为15海里(即
海里),在
点测得岛屿的西端点
在点
的东北方向,航行4海里后到达
点,测得岛屿的东端点
在点
的北偏东
方向(其中
、
、
在同一条直线上),求该岛屿东西两端点
之间的距离.(精确到0.1海里)参考数据:
,
,
.)



















如图所示,一艘快艇和一艘渔政船分别从B处出发执行任务.快艇沿北偏东60°方向以每小时40海里的速度向M岛前进,渔政船沿南偏东30°方向以每小时30海里的速度向P岛前进,半小时后到达各自目的地,则M岛与P岛之间的距离是多少?

如图,已知港口A东偏南10°方向有一处小岛B,一艘货轮从港口A沿南偏东40°航线出发,行驶80海里到达C处,此时观测小岛B在北偏东60°方向.
(1)求此时货轮到小岛B的距离.
(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.
(1)求此时货轮到小岛B的距离.
(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.

上午6:00时,甲船从M港出发,以80
和速度向东航行。半小时后,乙船也由M港出发,以相同的速度向南航行。上午8:00时,甲、乙两船相距多远?要求画出符合题意的图形.

如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距( )


A.25海里 | B.30海里 | C.40海里 | D.50海里 |
如图,甲乙两船从港口A同时出发,甲船以16海里/时的速度向北偏东
航行,乙船向南偏东
航行,3小时后,甲船到达C岛,乙船到达B岛,若C、B两岛相距102海里,问乙船的航速是多少?



已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距是多少?
