- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 勾股定理
- + 勾股定理的应用
- 利用勾股定理求梯子滑落高度
- 利用勾股定理求旗杆高度
- 利用勾股定理求小鸟飞行距离
- 利用勾股定理求大树折断前的高度
- 利用勾股定理解决水杯中筷子问题
- 利用勾股定理解决航海问题
- 利用勾股定理求河宽
- 利用勾股定理求台阶上地毯长度
- 利用勾股定理判断汽车是否超速
- 利用勾股定理判断是否受台风影响
- 利用勾股定理选址使到两地距离相等
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在一棵树的10米高的B处有两只猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树20米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高__米.

如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2 m,梯子的顶端B到地面的距离为7 m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m,同时梯子的顶端B下降至B′,那么BB′()


A.小于1 m | B.大于1 m |
C.等于1 m | D.小于或等于1 m |
如图,从高8米的电杆AC的顶部A处,向地面的固定点B处拉一根铁丝,若B点距电杆底部的距离为6米.现在准备一根长为9.9米长的铁丝,够用吗?请你说明理由.

沿海某城市A的正南方200千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现在15千米/时的速度沿北偏东30°方向往C移动且台风中心风力不变,若城市所受风力达到或超过5级,则称为受台风影响.

(1)该城市是否受到此次台风影响?请说明理由;
(2)若会受到台风影响,那么台风影响该城市持续时间有多长?

(1)该城市是否受到此次台风影响?请说明理由;
(2)若会受到台风影响,那么台风影响该城市持续时间有多长?
如图,一架长25m的梯子AB斜靠在墙AC上,这时梯足距墙面AC距离为7m,如果梯子顶端沿墙下滑4m,那么梯足将向外滑动的距离BB1为( )


A.15m | B.9m | C.8m | D.5m |
同学们想知道学校旗杆的高度,发现旗杆上的绳子垂到地面还多了2m,当它把绳子的下端拉开8m后,发现下端刚好接触地面,那么旗杆的高是_______米.
如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了( )


A.0.9米 | B.1.3米 | C.1.5米 | D.2米 |
如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?
