- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- + 三角形
- 三角形基础
- 全等三角形
- 等腰三角形
- 勾股定理
- 四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
长度为3cm、6cm、8cm、9cm的四条线段,若以其中的三条线段为边构成三角形,可以构成不同的三角形共有 ( )
A.1个 | B.2个 | C.3个 | D.4个 |
已知如图DE是△ABC的中位线,AF是BC边上的中线,DE、AF交于点O。现有以下结论:①DE∥BC;②OD=
BC;③AO=FO;④
。其中正确结论的个数为( )




A.1 | B.2 | C.3 | D.4 |
在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且满足∠A:∠B:∠C=1:2:3,则△ABC一定是( )
A.直角三角形 | B.锐角三角形 | C.钝角三角形 | D.不能确定 |
如图1,在△ABC中,∠ABC的角平分线与∠ACB的外角平分线交于A1.
(1)当∠A为70°时,∠A1= °;
(2)如图2,∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4,请写出∠A与∠A4的数量关系 ;
(3)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,试求∠Q与∠A1的数量关系.

(1)当∠A为70°时,∠A1= °;
(2)如图2,∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4,请写出∠A与∠A4的数量关系 ;
(3)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,试求∠Q与∠A1的数量关系.

小亮截了四根长分别为5cm,6cm,10cm,13cm的木条,任选其中三条组成一个三角形,这样拼成的三角形共有( )
A.1个 | B.2个 | C.3个 | D.4个 |