(1)已知:如图1,直线a,b被直线c所截,且∠1+∠2=180°.求证:a∥b.
(2)如图2,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.

(2)如图2,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.

已知:如图,点E、F分别是AB和CD上的点,DE、AF分别交BC于G、H,∠A=∠D,∠1=∠2,试说明∠B=∠C.

阅读下面的解题过程,在横线上补全推理过程或依据.
解:∵∠1=∠2(已知)
∠2=∠3(对顶角相等)
∴∠1=∠3(等量代换)
∴AF∥DE( )
∴∠4=∠D( )
又∵∠A=∠D(已知)
∴∠4=∠A( )
∴ ( )
∴∠B=∠C( )

阅读下面的解题过程,在横线上补全推理过程或依据.
解:∵∠1=∠2(已知)
∠2=∠3(对顶角相等)
∴∠1=∠3(等量代换)
∴AF∥DE( )
∴∠4=∠D( )
又∵∠A=∠D(已知)
∴∠4=∠A( )
∴ ( )
∴∠B=∠C( )
如图,直线AB∥CD,直线EF分别交直线AB、CD于E、F,∠BEF的平分线EG交CD于H.若∠EFH=50°,则∠BEH的度数为( )

A.50° B.55° C.60° D.65°

A.50° B.55° C.60° D.65°
(6分)已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.(在横线上填写正确的依据或证明步骤)

解答:是,理由如下:
∵AD⊥BC,EG⊥BC(已知)
∴∠4=∠5=90°(垂直的定义)
∴AD∥EG
∴∠1=∠E
∠2=∠3
∵∠E=∠3(已知)
∴∠ =∠ ;
∴AD是∠BAC的平分线(角平分线的定义).

解答:是,理由如下:
∵AD⊥BC,EG⊥BC(已知)
∴∠4=∠5=90°(垂直的定义)
∴AD∥EG
∴∠1=∠E
∠2=∠3
∵∠E=∠3(已知)
∴∠ =∠ ;
∴AD是∠BAC的平分线(角平分线的定义).
如图是一条管道的剖面图,如果要求管道经两次拐弯后的方向保持原来不变,那么管道的两个拐角∠α,∠β之间的关系是( )


A.∠α=∠β | B.∠α+∠β=90° | C.∠α+∠β=180° | D.∠α+∠β=360° |