十八世纪瑞士数学家欧拉证明了简单多面体中项点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式。请你观察下列儿种简单多面体模型,解答下列问题:

(1)根据上面多面体模型,完成表格中的空格:
你发现项点数(V)、面数(F)、棱数(F)之间存在的关系式是__________________________.
(2)一个多面体的面数比顶点数小8,且有30条棱,则这多面体的顶点数是 20;
(3)某个玻璃饰品的外形是简单多面体,它的外表是由三角形和八边形两种多边形拼接而成,且有48个顶点,每个顶点处都有3条棱,设该多面体表面三角形的个数为x个,八边形的个数为y个,求x+y的值.

(1)根据上面多面体模型,完成表格中的空格:
多面体 | 项点数(V) | 面数(F) | 棱数(F) |
四面体 | | | |
长方体 | | | |
正八面体 | | | |
正十二面体 | | | |
你发现项点数(V)、面数(F)、棱数(F)之间存在的关系式是__________________________.
(2)一个多面体的面数比顶点数小8,且有30条棱,则这多面体的顶点数是 20;
(3)某个玻璃饰品的外形是简单多面体,它的外表是由三角形和八边形两种多边形拼接而成,且有48个顶点,每个顶点处都有3条棱,设该多面体表面三角形的个数为x个,八边形的个数为y个,求x+y的值.
如图,已知直线AB与CD相交于点O,OE是∠BOD的平分线

(1)∠DOE的补角有 ;
(2)若∠DOE:∠AOD=1:7,求∠AOC的度数;
(3)射线OF⊥OE.
①当射线OF在直线AB上方时,试探究∠BOC与∠DOF之间的数量关系,并说明理由;
②当射线OF在直线AB下方时,∠BOC与∠DOF之间的数量关系是 .

(1)∠DOE的补角有 ;
(2)若∠DOE:∠AOD=1:7,求∠AOC的度数;
(3)射线OF⊥OE.
①当射线OF在直线AB上方时,试探究∠BOC与∠DOF之间的数量关系,并说明理由;
②当射线OF在直线AB下方时,∠BOC与∠DOF之间的数量关系是 .
若∠1与∠2互余,∠2与∠3互补,则∠1与∠3的关系是( )
A.∠1=∠3 | B.∠1与∠3互余 | C.∠1与∠3互补 | D.∠3﹣∠1=90° |
已知点A,B,C(如图),按要求完成下列问题:
(1)画出直线BC、射线CA、线段AB.
(2)过C点画CD⊥AB,垂足为点D.
(3)在以上的图中,互余的角为 ,互补的角为 .(各写出一对即可)
(1)画出直线BC、射线CA、线段AB.
(2)过C点画CD⊥AB,垂足为点D.
(3)在以上的图中,互余的角为 ,互补的角为 .(各写出一对即可)
