在平面直角坐标系中,矩形OABC的边OA、OC分别落在x轴、y轴上,O为坐标原点,且OA=8,OC=4,连接AC,将矩形OABC对折,使点A与点C重合,折痕ED交BC于点D,交OA于点E,连接AD,如图①.

(1)求点D的坐标和AD所在直线的函数关系式;
(2)⊙M的圆心M始终在直线AC上(点A除外),且⊙M始终与x轴相切,如图②.
①求证:⊙M与直线AD相切;
②圆心M在直线AC上运动,在运动过程中,能否与y轴也相切?如果能相切,求出此时⊙M与x轴、y轴和直线AD都相切时的圆心M的坐标;如果不能相切,请说明理由.

(1)求点D的坐标和AD所在直线的函数关系式;
(2)⊙M的圆心M始终在直线AC上(点A除外),且⊙M始终与x轴相切,如图②.
①求证:⊙M与直线AD相切;
②圆心M在直线AC上运动,在运动过程中,能否与y轴也相切?如果能相切,求出此时⊙M与x轴、y轴和直线AD都相切时的圆心M的坐标;如果不能相切,请说明理由.
如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(-4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是 .

已知:如图,反比例函数
与一次函数
的图象交于A(3,1)、B(m,-3)两点.
(1)求反比例函数
与一次函数
的解析式.
(2)若点P是直线
上一点,且OP=
OA,请直接写出点P的坐标.


(1)求反比例函数


(2)若点P是直线



矩形ABCD中的顶点A、B、C、D按顺时针方向排列,若在平面直角坐标系内, B、D 两点对应的坐标分别是(2, 0), (0, 0),且 A、C两点关于x轴对称.则A,C 点对应的坐标是___
已知一次函数y=k1x+b与反比例函数y=
的图象交于第一象限内的P(
,8),Q(4,m)两点,与x轴交于A点.
(1)分别求出这两个函数的表达式;
(2)写出点P关于原点的对称点P'的坐标;
(3)求∠P'AO的正弦值.


(1)分别求出这两个函数的表达式;
(2)写出点P关于原点的对称点P'的坐标;
(3)求∠P'AO的正弦值.

已知函数
的图象与
轴有两个公共点.
(1)求
的取值范围,写出当
取范围内最大整数时函数的解析式;
(2)题(1)中求得的函数记为C1
①当
时,
的取值范围是
,求
的值;
②函数C2:
的图象由函数C1的图象平移得到,其顶点P落在以原
点为圆心,半径为
的圆内或圆上.设函数C1的图象顶点为M,求点P与点M距
离最大时函数C2的解析式.


(1)求


(2)题(1)中求得的函数记为C1
①当




②函数C2:

点为圆心,半径为

离最大时函数C2的解析式.