- 数与式
- 方程与不等式
- 一元二次方程的相关概念
- 解一元二次方程
- + 实际问题与一元二次方程
- 一元二次方程的应用——传播问题
- 一元二次方程的应用——增长率问题
- 一元二次方程的应用——与图形有关的问题
- 一元二次方程的应用——数字问题
- 一元二次方程的应用——营销问题
- 一元二次方程的应用——动态几何问题
- 一元二次方程的应用——工程问题
- 一元二次方程的应用——行程问题
- 一元二次方程的应用——图表信息题
- 一元二次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某种产品原来每件价格为875元,经过两次降价,且每次降价的百分率相同,现在每件售价为560元,设每次降价的百分率为
,依题意可列出关于
的方程( )


A.![]() | B.![]() |
C.![]() | D.![]() |
某校计划修建一个长方形花坛,要求花坛的长与宽的比为2 : 1. 如图所示花坛中间为花卉种植区域,花卉种植区域前侧留有2米宽的空地,其它三侧各保留1米宽的通道. 如果要求花卉种植区域的面积是55平方米,那么整个花坛的长与宽分别为多少米?

获2019年度诺贝尔化学奖的“锂电池”创造了一个更清洁的世界.我国新能源发展迅猛,某种特型锂电池2016年销售量为8万个,到2018年销售量为97万个.设年均增长率为x,可列方程为( )
A.8(1+x)2=97 | B.97(1﹣x)2=8 | C.8(1+2x)=97 | D.8(1+x2)=97 |
如图1所示,有一张三角形纸片ABC,已知∠ACB=90°,AC=24,BC=10,AB=26,点D为AB边上一点,联结CD,AD=CD=DB,沿CD把这张纸片剪成△
和△
两个三角形如图2所示,将纸片△
沿直线
方向平移(点A、
始终都在同一直线上),
与
交于点E、
与
、
分别交于点E、F。

(1)在△A
平移过程中,求证:
(2)当△A
平移到如图3所示的位置时,猜想图中的
数量关系,并予以证明。
(3)设平移距离
为x,在平移过程中,AP=
AB,PB=
AB,请求出△APB的面积等于原△ABC面积一半时的x值。











(1)在△A


(2)当△A


(3)设平移距离



某种药品原来每盒价格为80元,经过两次降价,且每次降价率都为x,现在每盒价格为57.8元。根据题意,可列方程:____________________________
已知:平行四边形ABCD的两边AB、BC的长是关于x的方程x2﹣mx+
﹣
=0的两个实数根.
(1)试说明:无论m取何值方程总有两个实数根
(2)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;
(3)若AB的长为2,那么平行四边形ABCD的周长是多少?


(1)试说明:无论m取何值方程总有两个实数根
(2)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;
(3)若AB的长为2,那么平行四边形ABCD的周长是多少?
一台冰箱的成本价是1600元,按成本价增加50%作为售价,近来因为世界金融危机影响,计划进行一次打折出售,但销路仍不畅,因此再次打同样的折扣出售,卖出后与成本价比还赚了134元,问这两次所打的折扣是几折?
某超市一月份的营业额为200万元,一月、二月、三月的营业额共1000万元,如果平均每月增长率为
,则由题意列方程应为____________________________ 。
