- 数与式
- 方程与不等式
- 一元二次方程的相关概念
- 解一元二次方程
- + 实际问题与一元二次方程
- 一元二次方程的应用——传播问题
- 一元二次方程的应用——增长率问题
- 一元二次方程的应用——与图形有关的问题
- 一元二次方程的应用——数字问题
- 一元二次方程的应用——营销问题
- 一元二次方程的应用——动态几何问题
- 一元二次方程的应用——工程问题
- 一元二次方程的应用——行程问题
- 一元二次方程的应用——图表信息题
- 一元二次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,要建一个面积为 140 平方米的仓库,仓库的一边靠墙,这堵墙的长为 18 米,在 与墙垂直的一边要开一扇 2 米宽的门,已知围建仓库的现有木板材料可使新建板墙的总长 为 32 米,那么这个仓库的宽和长分别是多少米?

如图,在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为xm,列出的方程是_____.(化为一般式)

某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元,若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多少株?设每盆多植X株,则可以列出的方程是( )
A.(x+1)(4-0.5x)=15 | B.(x+3)(4+0.5x)=15 |
C.(x+4)(3-0.5x)=15 | D.(3+x)(4-0.5x)=15 |
某公司一月份的产值为80万元,二、三月份的平均增长率都为x,三月份的产值比一月份产值多10万元,则可列方程为__________________
某农场要建一个饲养场(矩形ABCD)两面靠现有墙(AD位置的墙最大可用长度为27米,AB位置的墙最大可用长度为15米),另两边用木栏围成,中间也用木栏隔开,分成两个场地及一处通道,并在如图所示的三处各留1米宽的门(不用木栏).建成后木栏总长45米.设饲养场(矩形ABCD)的一边AB长为x米.

(1)饲养场另一边BC=____米(用含x的代数式表示).
(2)若饲养场的面积为180平方米,求x的值.

(1)饲养场另一边BC=____米(用含x的代数式表示).
(2)若饲养场的面积为180平方米,求x的值.
某淘宝网店销售台灯,成本为每个30元,销售大数据分析表明,当每个台灯售价为40元时,平均每月售出600个,若售价每上涨1元,其月销量就减少20个,若售价每下降1元,其月销量就增加200个.
(1)若售价上涨
元,每月能售出___________个台灯.
(2)为迎接“双十一”,该网店决定降价销售,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.
(1)若售价上涨

(2)为迎接“双十一”,该网店决定降价销售,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.
如图,矩形ABCD是一花圃,它的一边AD利用已有的围墙(可利用的围墙足够长),另外三边所用的栅栏的总长度是20m.若矩形ABCD的面积为50m2,求AB的长度.

如图,某单位院内有一块长30m,宽20 m的长方形花园,计划在花园内修两条纵向平行和一条横向弯折的道路(所有道路的进出口宽度都相等,且每段道路的对边互相平行),其余的地方种植花草.已知种植花草的面积为532 m2,设道路进出口的宽度为x m,根据条件,可列出方程___________.
