- 数与式
- 方程与不等式
- 一元一次方程
- 二元一次方程组
- + 一元二次方程
- 一元二次方程的相关概念
- 解一元二次方程
- 实际问题与一元二次方程
- 分式方程
- 不等式与不等式组
- 无理方程
- 二元二次方程组
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知α,β满足α+β=6,且αβ=8,则以α,β为两根的一元二次方程是( )
A.x![]() | B.x![]() | C.x![]() | D.x![]() |
阅读下面的材料,回答问题:
解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.
当y=1时,x2=1,∴x=±1;
当y=4时,x2=4,∴x=±2;
∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.
(1)在由原方程得到方程①的过程中,利用 法达到 的目的,体现了数学的转化思想.
(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.
解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.
当y=1时,x2=1,∴x=±1;
当y=4时,x2=4,∴x=±2;
∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.
(1)在由原方程得到方程①的过程中,利用 法达到 的目的,体现了数学的转化思想.
(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.
如图,在Rt△ABC中∠C=90°,BC=7cm.动点P在线段AC上从点C出发,沿CA方向运动;动点Q在线段BC上同时从点B出发,沿BC方向运动.如果点P,Q的运动速度均为lcm/s,那么运动几秒时,它们相距5cm.

下列说法正确的是( )
①经过三个点一定可以作圆;②若等腰三角形的两边长分别为3和7,则第三边长是3或7;③一个正六边形的内角和是其外角和的2倍;④随意翻到一本书的某页,页码是偶数是随机事件;⑤关于x的一元二次方程x2-(k+3)x+k=0有两个不相等的实数根.
①经过三个点一定可以作圆;②若等腰三角形的两边长分别为3和7,则第三边长是3或7;③一个正六边形的内角和是其外角和的2倍;④随意翻到一本书的某页,页码是偶数是随机事件;⑤关于x的一元二次方程x2-(k+3)x+k=0有两个不相等的实数根.
A.①②③ | B.①④⑤ | C.②③④ | D.③④⑤ |