- 数与式
- 方程与不等式
- 一元一次方程
- 二元一次方程组
- + 一元二次方程
- 一元二次方程的相关概念
- 解一元二次方程
- 实际问题与一元二次方程
- 分式方程
- 不等式与不等式组
- 无理方程
- 二元二次方程组
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.
(1)该项绿化工程原计划每天完成多少米2?
(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?
(1)该项绿化工程原计划每天完成多少米2?
(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?

正方形ABCD、正方形BEFG,点A、B、E在半圆O的直径上,点D、C、F在半圆O上,若EF=4,则该半圆的半径为( )


A.![]() | B.8 | C.![]() | D.![]() |
如图,某中学准备在校园里利用院墙的一段再围三面篱笆,形成一个矩形花园
(院墙
长
米),现有
米长的篱笆.(篱笆必须用完)

(1)设AB=x米,则BC= 米
(2)请你设计一下围法,使矩形花园的面积为
米.





(1)设AB=x米,则BC= 米
(2)请你设计一下围法,使矩形花园的面积为

已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0
(1)求证:无论k为何值,方程有两个不相等的实数根;
(2)若方程的两根之和x1+x2=7,求方程的两根x1,x2.
(1)求证:无论k为何值,方程有两个不相等的实数根;
(2)若方程的两根之和x1+x2=7,求方程的两根x1,x2.
对于一元二次方程
来说,当
时,方程有两个相等的实数根:若将
的值在
的基础上减小,则此时方程根的情况是( )




A.没有实数根 | B.两个相等的实数根 |
C.两个不相等的实数根 | D.一个实数根 |