- 数与式
- 方程与不等式
- 一元一次方程
- + 二元一次方程组
- 二元一次方程(组)的相关概念
- 解二元一次方程组
- 同解方程组
- 三元一次方程组
- 一元二次方程
- 分式方程
- 不等式与不等式组
- 无理方程
- 二元二次方程组
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽,每位男孩看到的蓝色与红色游冰帽一样多,而每位女孩看到的蓝色游泳帽是红色游泳帽的2倍,则有男孩_____人.
鸡兔同笼问题是我国古代著名的数学趣题,出自《孙子算经》.原文为:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?小雪自己解决完此题后,又饶有兴趣地为同学编制了四道题目:
①今有雉兔同笼,上有三十头,下有五十二足,问雉兔各几何?
②今有雉兔同笼,上有三十头,下有八十一足,问雉兔各几何?
③今有雉兔同笼,上有三十四头,下有九十足,问雉兔各几何?
④今有雉兔同笼,上有三十四头,下有九十二足,问雉兔各几何?
根据小雪编制的四道题目的数据,可以求得鸡兔只数的题目是_(填题目前的序号).
①今有雉兔同笼,上有三十头,下有五十二足,问雉兔各几何?
②今有雉兔同笼,上有三十头,下有八十一足,问雉兔各几何?
③今有雉兔同笼,上有三十四头,下有九十足,问雉兔各几何?
④今有雉兔同笼,上有三十四头,下有九十二足,问雉兔各几何?
根据小雪编制的四道题目的数据,可以求得鸡兔只数的题目是_(填题目前的序号).
某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.
(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?
(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有哪几种建造停车位的方案?
(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?
(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有哪几种建造停车位的方案?
甲、乙、丙三种糖果,每千克的价格分别是28元、20元、16元.若将这三种糖果按3︰2︰5的比例混合成杂拌糖,则每千克售价为____元.