- 数与式
- 方程与不等式
- + 一元一次方程
- 从算式到方程
- 解一元一次方程
- 实际问题与一元一次方程
- 二元一次方程组
- 一元二次方程
- 分式方程
- 不等式与不等式组
- 无理方程
- 二元二次方程组
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
列方程式应用题.
天河食品公司收购了200吨新鲜柿子,保质期15天,该公司有两种加工技术,一种是加工为普通柿饼,另一种是加工为特级霜降柿饼,也可以不需加工直接销售.相关信息见表:
由于生产条件的限制,两种加工方式不能同时进行,为此公司研制了两种可行方案:
方案1:尽可能多地生产为特级霜降柿饼,没来得及加工的新鲜柿子,在市场上直接销售;
方案2:先将部分新鲜柿子加工为特级霜降柿饼,再将剩余的新鲜柿子加工为普通柿饼,恰好15天完成.
请问:哪种方案获利更多?获利多少元?
天河食品公司收购了200吨新鲜柿子,保质期15天,该公司有两种加工技术,一种是加工为普通柿饼,另一种是加工为特级霜降柿饼,也可以不需加工直接销售.相关信息见表:
品种 | 每天可加工数量(吨) | 每吨获利(元) |
新鲜柿子 | 不需加工 | 1000元 |
普通柿饼 | 16吨 | 5000元 |
特级霜降柿饼 | 8吨 | 8000元 |
由于生产条件的限制,两种加工方式不能同时进行,为此公司研制了两种可行方案:
方案1:尽可能多地生产为特级霜降柿饼,没来得及加工的新鲜柿子,在市场上直接销售;
方案2:先将部分新鲜柿子加工为特级霜降柿饼,再将剩余的新鲜柿子加工为普通柿饼,恰好15天完成.
请问:哪种方案获利更多?获利多少元?
(列一元一次方程解决问题)2018年末,“诺如”病毒突现山城,某药店计划购进A、B两种瓶装的免洗消毒液共1200瓶这两种消毒液的进价,售价如下表所示:
要使该商场售完这批消毒液的利润恰好为总进价的45%,A种消毒液应购进多少瓶?
| A种 | B种 |
进价(元/瓶) | 20 | 40 |
售价(元/瓶) | 30 | 55 |
要使该商场售完这批消毒液的利润恰好为总进价的45%,A种消毒液应购进多少瓶?
某商场元旦促销,将某种书包每个x元,第一次降价打“八折”,第二次降价每个又减18元,经两次降价后售价为102元,则所列方程是()
A.x﹣0.8x﹣18=102 | B.0.08x﹣18=102 |
C.102﹣0.8x=18 | D.0.8x﹣18=102 |
为开展阳光体育活动,某班需要购买一批羽毛球拍和羽毛球,现了解情况如下:甲、乙两家商店岀售同样品牌的羽毛球拍和羽毛球,羽毛球拍毎副定价30元,羽毛球每盒定价5元,且两家都有优惠:甲店每买一副球拍赠一盒羽毛球;乙店全部按定价的9折优惠.
(1)若该班需购买羽毛球拍5副,购买羽毛球
盒(不小于5盒).当购买多少盒羽毛球时,在两家商店购买所花的钱相等?
(2)若需购买10副羽毛球拍,30盒羽毛球,怎样购买更省钱?
(1)若该班需购买羽毛球拍5副,购买羽毛球

(2)若需购买10副羽毛球拍,30盒羽毛球,怎样购买更省钱?
如图,若点A在数轴上对应的数为a,点B在数轴上对应的数为 b,且 a, b 满足
+ (b - 1)2= 0.点A与点B之间的距离表示为 AB (以下类同) .

(1)求 AB 的长;
(2)点C在数轴上对应的数为x,且x是方程 2x -2=
x + 2的解,在数轴上是否存在点 p,使得 PA+PB=PC? 若存在,求出点P对应的数;若不存在,说明理由.


(1)求 AB 的长;
(2)点C在数轴上对应的数为x,且x是方程 2x -2=
