- 数与式
- 方程与不等式
- + 一元一次方程
- 从算式到方程
- 解一元一次方程
- 实际问题与一元一次方程
- 二元一次方程组
- 一元二次方程
- 分式方程
- 不等式与不等式组
- 无理方程
- 二元二次方程组
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
甲、乙两人同时从A地出发去25km远的B地,甲骑车,乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40min,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好为3h.
(1)若设乙的速度为x km/h,则甲的速度为 km/h,甲遇见乙时,乙走的路程可以表示为 km,甲走的路程可以表示为 km.
(2)两人的速度分别是多少?(请用方程来解决问题)
(1)若设乙的速度为x km/h,则甲的速度为 km/h,甲遇见乙时,乙走的路程可以表示为 km,甲走的路程可以表示为 km.
(2)两人的速度分别是多少?(请用方程来解决问题)
自来水公司为限制开发区单位用水,每月只给某单位计划内用水300吨,计划内用水每吨收费3元,超计划部分每吨按4元收费.
(1)用代数式表示(所填结果需化简):设用水量为x吨,当用水量小于等于300吨,需付款 元;当用水量大于300吨,需付款 元.
(2)某月该单位用水360吨,水费是__________元;若用水250吨,水费__________元.
(3)若某月该单位缴纳水费1300元,则该单位用水多少吨?(请用方程来解决问题)
(1)用代数式表示(所填结果需化简):设用水量为x吨,当用水量小于等于300吨,需付款 元;当用水量大于300吨,需付款 元.
(2)某月该单位用水360吨,水费是__________元;若用水250吨,水费__________元.
(3)若某月该单位缴纳水费1300元,则该单位用水多少吨?(请用方程来解决问题)
某校准备利用寒假期间走访慰问贫困家庭学生,并给每位贫困家庭学生赠送一份学习用品,学习用品每份售价60元,某商场给出了两种团购(50份以上)优惠方案:方案一:5份学习用品享受爱心免费赠送,剩下的学习用品按售价打九折;方案二:所购买的学习用品全部按售价打八五折.
(1)该校采购老师发现:该校无论选择哪种团购方案,要付的钱是一样的,问该校需要购买多少份学习用品?
(2)若该校改变计划,需购买学习用品80份,选择哪种方案优惠?说明理由,并求出选择该方案优惠的百分数(精确到1%).
(1)该校采购老师发现:该校无论选择哪种团购方案,要付的钱是一样的,问该校需要购买多少份学习用品?
(2)若该校改变计划,需购买学习用品80份,选择哪种方案优惠?说明理由,并求出选择该方案优惠的百分数(精确到1%).
甲厂有91名工人,乙厂有49名工人,为了赶制一批产品又调来了100名工人,为使甲厂的人数比乙厂人数的3倍少12人,应往甲、乙两厂各调多少名工人?