小明和父母打算去某火锅店吃火锅,该店在网上出售“
元抵
元的全场通用代金券”(即面值
元的代金券实付
元就能获得),店家规定代金券等同现金使用,一次消费最多可用
张代金券,而且使用代金券的金额不能超过应付总金额.
(1)如果小明一家应付总金额为
元,那么用代金券方式买单,他们最多可以优惠多少元:
(2)小明一家来到火锅店后,发现店家现场还有一个优惠方式: 除锅底不打折外,其余菜品全部
折.小明一家点了一份
元的锅底和其他菜品,用餐完毕后,聪明的小明对比两种优惠,选择了现场优惠方式买单,这样比用代金券方式买单还能少付
元.问小明一家实际付了多少元?





(1)如果小明一家应付总金额为

(2)小明一家来到火锅店后,发现店家现场还有一个优惠方式: 除锅底不打折外,其余菜品全部



我国古代对于利用方程解决实际问题早有研究,《九章算术》中提到这么一道“以绳测井”的题:以绳测井,若将绳三折测之,绳多四尺:若将绳四折测之,绳多一尺.绳长、井深各几何?
这道题大致意思是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?若设井深为x尺,则求解井深的方程正确的是( )
这道题大致意思是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份井外余绳四尺:如果将绳子折成四等份,那么每等份井外余绳一尺.问绳长和井深各多少尺?若设井深为x尺,则求解井深的方程正确的是( )
A.3(x+4)=4(x+1) | B.3x+4=4x+1 |
C.![]() ![]() | D.![]() ![]() |
日历上的规律:表格是2020年元月的日历,图中的阴影区域是在日历中选取的一块九宫格.
(1)九宫格中,四个角的四个数之和与九宫格中央那个数有什么关系?
(2)请你自选一块九宫格进行计算,看四个角上的四个数之和与九宫格中央那个数是否还有这种关系?
(3)试说明原理.
日 | 一 | 二 | 三 | 四 | 五 | 六 |
| | | 1 | 2 | 3 | 4 |
5 | | | | 9 | 10 | 11 |
12 | | | | 16 | 17 | 18 |
19 | | | | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 | |
(1)九宫格中,四个角的四个数之和与九宫格中央那个数有什么关系?
(2)请你自选一块九宫格进行计算,看四个角上的四个数之和与九宫格中央那个数是否还有这种关系?
(3)试说明原理.
如果把月亮绕地球旋转的轨迹看成一个圆,地心在圆心上。我们知道地球每24小时逆时针方向自转一圈(从俯视角度看),月亮每月逆时针绕地球旋转一圈.

(1)求地球每小时旋转的角度;
(2)求月亮绕地球每小时旋转的角度(每月以30天记);
(3)某月15日20:00时,月亮恰好在甲地正上方(如图),到第二天大约几时几分月亮再次出现在甲地正上方?

(1)求地球每小时旋转的角度;
(2)求月亮绕地球每小时旋转的角度(每月以30天记);
(3)某月15日20:00时,月亮恰好在甲地正上方(如图),到第二天大约几时几分月亮再次出现在甲地正上方?
程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x人,依题意列方程得_____.
一文具店在某一时间以每件30元的价格卖出两个笔袋,其中一个盈利25%,另一个亏损25%.卖这两个笔袋总的盈亏情况是_____元(填盈利或亏损多少)