- 数与式
- 同底数幂的乘法
- 幂的乘方
- 积的乘方
- 同底数幂的除法
- 幂的混合运算
- 单项式乘多项式
- + 多项式乘多项式
- 计算多项式乘多项式
- (x+p)(x+q)型多项式乘法
- 已知多项式乘积不含某项求字母的值
- 多项式乘多项式——化简求值
- 多项式乘多项式与图形面积
- 多项式乘法中的规律性问题
- 整式乘法混合运算
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
若长方形的长为 (4a2-2a +1) ,宽为 (2a +1) ,则这个长方形的面积为( )
A.8a3-4a2+2a-1 | B.8a3-1 |
C.8a3+4a2-2a-1 | D.8a3 +1 |
正在改造的人行道工地上,有两种铺设路面材料:一种是长为acm、宽为bcm的矩形板材(如图1),另一种是边长为ccm的正方形地砖(如图2).

(1)用多少块如图2所示的正方形地砖能拼出一个新的正方形?(只要写出一个符合条件的答案即可),并写出新正方形的面积;
(2)现用如图1所示的四块矩形板材铺成一个大矩形(如图3)或大正方形(如图4),中间分别空出一个小矩形和一个小正方形.
①试比较中间的小矩形和中间的小正方形的面积哪个大?大多少?
②如图4,已知大正方形的边长比中间小正方形的边长多20cm,面积大3200cm2.如果选用如图2所示的正方形地砖(边长为20cm)铺设图4中间的小正方形部分,那么能否做到不用切割地砖就可直接密铺(缝隙忽略不计)呢?若能,请求出密铺所需地砖的块数;若不能,至少要切割几块如图2的地砖?

(1)用多少块如图2所示的正方形地砖能拼出一个新的正方形?(只要写出一个符合条件的答案即可),并写出新正方形的面积;
(2)现用如图1所示的四块矩形板材铺成一个大矩形(如图3)或大正方形(如图4),中间分别空出一个小矩形和一个小正方形.
①试比较中间的小矩形和中间的小正方形的面积哪个大?大多少?
②如图4,已知大正方形的边长比中间小正方形的边长多20cm,面积大3200cm2.如果选用如图2所示的正方形地砖(边长为20cm)铺设图4中间的小正方形部分,那么能否做到不用切割地砖就可直接密铺(缝隙忽略不计)呢?若能,请求出密铺所需地砖的块数;若不能,至少要切割几块如图2的地砖?
若 ( x 2+ px -
)( x 2- 3x + q) 的积中不含 x 项与 x3项
(1)求 p、q 的值;(2)求代数式(-2p2q)2+(3pq)-1+p2013q2014的值.

(1)求 p、q 的值;(2)求代数式(-2p2q)2+(3pq)-1+p2013q2014的值.