- 数与式
- 有理数加减乘除混合运算
- + 有理数加减乘除混合运算的实际应用
- 程序流程图与有理数计算
- 算“24”点
- 含乘方的有理数混合运算
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( )
A.54盏 | B.55盏 | C.56盏 | D.57盏 |
高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16
(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?
(2)养护过程中,最远处离出发点有多远?
(3)若汽车耗油量为0.09升/千米,则这次养护共耗油多少升?
(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?
(2)养护过程中,最远处离出发点有多远?
(3)若汽车耗油量为0.09升/千米,则这次养护共耗油多少升?
某食品厂计划平均每天生产200袋食品,但是由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超过计划量记为正)

(1)根据记录的数据可知该厂星期二生产食品多少袋?
(2)根据记录的数据可知产量最多的一天比产量最少的一天多生产食品多少袋?
(3)根据记录的数据可知该厂本周实际共生产食品多少袋?

(1)根据记录的数据可知该厂星期二生产食品多少袋?
(2)根据记录的数据可知产量最多的一天比产量最少的一天多生产食品多少袋?
(3)根据记录的数据可知该厂本周实际共生产食品多少袋?
解决问题,一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.
(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家.
(2)小明家距小彬家多远?
(3)货车一共行驶的多少千米?
(4)货车每千米耗油0.2升,这次共耗油多少升?
(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家.
(2)小明家距小彬家多远?
(3)货车一共行驶的多少千米?
(4)货车每千米耗油0.2升,这次共耗油多少升?
为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师。如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,-4,+13,-10,-12,+3,+13,+17.
(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?
(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?
(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?
(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?
已知海拔每升高1000m,气温下降6℃,某人乘热气球从温度是10℃的地面缓缓上升,当热气球上升到一定高度时,测得高空温度是-2℃,求此时热气球的高度.
某超市去年第一季度平均每月盈利2万元,第二季度平均每月亏损1.5万元,第三季度平均每月亏损1.7万元,第四季度平均每月盈利2.5万元.
(1)将盈利记为“+”,亏损记为“-”,补充下表:(单位:万元)

(2)这家超市去年总盈亏情况如何?
(1)将盈利记为“+”,亏损记为“-”,补充下表:(单位:万元)

(2)这家超市去年总盈亏情况如何?
一个运算符号游戏规定:在“1□2□6□9”中的每个□内,填入运算符号+,-,
,
(再重复使用)
(1)计算:1-2+6
9
(2)若1
2
6□9=-6,请推算出□内的运算符号;
(3)在“1□2□6-9”的□内填入运算符号内,使计算结果最小,并求出这个最小结果.


(1)计算:1-2+6

(2)若1


(3)在“1□2□6-9”的□内填入运算符号内,使计算结果最小,并求出这个最小结果.
近年来,电动小汽车在我市广泛使用,市治安巡警某分队常常在一条东西走向的道路上巡逻.一天下午,该巡警分队驾驶电动小汽车从位于这条道路上的某派出所出发巡逻,如果规定向东为正,向西为负,他们行驶里程(单位:km)如下:﹣5,﹣2,+8,﹣3,+6,﹣4,+5,+3.问:
(1)这辆小汽车完成上述巡逻后在该派出所的那一侧?距离该派出所有多少千米?
(2)已知这种电动小汽车平均每千米耗电0.15度,则这天下午小汽车共耗电多少度?
(1)这辆小汽车完成上述巡逻后在该派出所的那一侧?距离该派出所有多少千米?
(2)已知这种电动小汽车平均每千米耗电0.15度,则这天下午小汽车共耗电多少度?