- 数与式
- 有理数的乘法
- 倒数
- 有理数的乘方
- + 有理数的混合运算
- 有理数加减乘除混合运算
- 有理数加减乘除混合运算的实际应用
- 程序流程图与有理数计算
- 算“24”点
- 含乘方的有理数混合运算
- 计算器——有理数
- 近似数
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
把几个数或整式用大括号括起来,中间用逗号分开,如{﹣3,6,12},{x,xy2,﹣2x+1},我们称之为集合,其中大括号内的数或整式称为集合的元素.定义如果一个集合满足:只要其中有一个元素x使得﹣2x+1也是这个集合的元素,这样的集合称为关联集合,元素﹣2x+1称为条件元素.例如:集合{﹣1,1,0}中元素1使得﹣2×1+1=﹣1,﹣1也恰好是这个集合的元素,所以集合{﹣1,1,0}是关联集合,元素﹣1称为条件元素.又如集合
满足﹣2×
是关联集合,元素
称为条件元素.
(1)试说明:集合
是关联集合.
(2)若集合{xy﹣y2,A}是关联集合,其中A是条件元素,试求A.



(1)试说明:集合

(2)若集合{xy﹣y2,A}是关联集合,其中A是条件元素,试求A.
下表给出了某班6名同学身高情况(单位:cm)

(1)完成表中空的部分;
(2)他们6人中最高身高比最矮身高高多少?
(3)如果身高达到或超过平均身高时叫达标身高,那么这6个同学身高的达标率是多少?(精确到小数点后两位)

(1)完成表中空的部分;
(2)他们6人中最高身高比最矮身高高多少?
(3)如果身高达到或超过平均身高时叫达标身高,那么这6个同学身高的达标率是多少?(精确到小数点后两位)