- 数与式
- 数轴的三要素及其画法
- + 用数轴上的点表示有理数
- 利用数轴比较有理数的大小
- 数轴上两点之间的距离
- 数轴上的动点问题
- 根据点在数轴的位置判断式子的正负
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
(思考)数轴上,点C是线段AB的中点,请填写下列表格
(发现)通过表格可以得到,数轴上一条线段的中点表示的数是这条线段两端点表示的数的 ;
(表达)若数轴上A、B两点表示的数分别为m、n,则线段AB的中点表示的数是 ;
(应用)如图,数轴上点A、C、B表示的数分别为﹣2x、
x﹣4、1,且点C是线段AB的中点,求x的值.
A点表示的数 | B点表示的数 | C点表示的数 |
2 | 6 | |
﹣1 | ﹣5 | |
﹣3 | 1 | |
(发现)通过表格可以得到,数轴上一条线段的中点表示的数是这条线段两端点表示的数的 ;
(表达)若数轴上A、B两点表示的数分别为m、n,则线段AB的中点表示的数是 ;
(应用)如图,数轴上点A、C、B表示的数分别为﹣2x、


如图,在数轴上A点表示数a,B点表示数b,且a、b满足|a+2|+(b−6)2=0

(1)点A表示的数为 ;点B表示的数为 ;
(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=3BC,则C点表示的数 ;
(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),请分别表示出甲、乙两小球到原点的距离(用t表示).

(1)点A表示的数为 ;点B表示的数为 ;
(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=3BC,则C点表示的数 ;
(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),请分别表示出甲、乙两小球到原点的距离(用t表示).
(背景知识)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a–b|,线段AB的中点表示的数为
.
(问题情境)如图,数轴上点A表示的数为–2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.
设运动时间为t秒(t>0).
(综合运用)(1)填空:①A、B两点间的距离AB=__________,线段AB的中点表示的数为__________;
②用含t的代数式表示:t秒后,点P表示的数为__________;点Q表示的数为__________.
(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;
(3)求当t为何值时,PQ=
AB;
(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.

(问题情境)如图,数轴上点A表示的数为–2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.
设运动时间为t秒(t>0).
(综合运用)(1)填空:①A、B两点间的距离AB=__________,线段AB的中点表示的数为__________;
②用含t的代数式表示:t秒后,点P表示的数为__________;点Q表示的数为__________.
(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;
(3)求当t为何值时,PQ=

(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.

已知,如图,数轴上A、B、C、D四点对应的分别是整数,a、b、c、d,且有a+2b+c-d=-1那么,原点应是点( )


A.A | B.B | C.C | D.D |
如图,已知点A,B,C是数轴上三点,O为原点,点C对应的数为3,BC=2,AB=6.

(1)求点A,B对应的数;
(2)动点M,N分别同时从AC出发,分别以每秒3个单位和1个单位的速度沿数轴正方向运动.P为AM的中点,Q在CN上,且CQ=
CN,设运动时间为t(t>0).
①求点P,Q对应的数(用含t的式子表示);
②t为何值时OP=BQ.

(1)求点A,B对应的数;
(2)动点M,N分别同时从AC出发,分别以每秒3个单位和1个单位的速度沿数轴正方向运动.P为AM的中点,Q在CN上,且CQ=

①求点P,Q对应的数(用含t的式子表示);
②t为何值时OP=BQ.
已知点A在数轴上对应的有理数是a,将点A向左移动4个单位,再向右移动一个单位与点B重合,若点B对应的有理数是-25,则a=_______。
已知a是最大的负整数,b是-5的相反数,c=-|-2|,且a、b、c分别是点A、B、C在数轴上对应的数.

(1)求a、b、c的值,并在数轴上标出点A、B、

(1)求a、b、c的值,并在数轴上标出点A、B、
A. (2)若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,点P可以追上点Q? (3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于12,请求出所有点M对应的数. |