- 数与式
- 正数和负数
- 有理数的初步认识
- + 数轴
- 数轴的三要素及其画法
- 用数轴上的点表示有理数
- 利用数轴比较有理数的大小
- 数轴上两点之间的距离
- 数轴上的动点问题
- 根据点在数轴的位置判断式子的正负
- 相反数
- 绝对值
- 有理数大小比较
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
一辆货车从超市出发,向东走了3km,到达小刚家,继续向东走了4km到达小红家,又向西走了11km到达小英家,最后回到超市。
(1)请以超市为原点,以向东方向为正方向,用1个单位长度表示1km,画出数轴。并在数轴上表示出小刚家、小红家、小英家的位置;
(2)小英家距小刚家有多远?
(3)货车一共行驶了多少千米?
(1)请以超市为原点,以向东方向为正方向,用1个单位长度表示1km,画出数轴。并在数轴上表示出小刚家、小红家、小英家的位置;
(2)小英家距小刚家有多远?
(3)货车一共行驶了多少千米?
通过学习绝对值,我们知道
的几何意义是数轴上表示数
在数轴上的对应点与原点的距离,如:
表示
在数轴上的对应点到原点的距离.
,即
表示
、
在数轴上对应的两点之间的距离,类似的,
,即
表示
、
在数轴上对应的两点之间的距离;一般地,点
,
在数轴上分别表示数
、
,那么
,
之间的距离可表示为
.
请根据绝对值的几何意义并结合数轴解答下列问题:
(1)数轴上表示
和
的两点之间的距离是___;数轴上
、
两点的距离为
,点
表示的数是
,则点
表示的数是___.
(2)点
,
,
在数轴上分别表示数
、
、
,那么
到点
.点
的距离之和可表示为_ (用含绝对值的式子表示);若
到点
.点
的距离之和有最小值,则
的取值范围是_ __.
(3)
的最小值为_ __.



















请根据绝对值的几何意义并结合数轴解答下列问题:
(1)数轴上表示








(2)点













(3)
