- 数与式
- 正数和负数
- 有理数的初步认识
- + 数轴
- 数轴的三要素及其画法
- 用数轴上的点表示有理数
- 利用数轴比较有理数的大小
- 数轴上两点之间的距离
- 数轴上的动点问题
- 根据点在数轴的位置判断式子的正负
- 相反数
- 绝对值
- 有理数大小比较
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
我们规定:有理数
用数轴上点
表示,
叫做点
在数轴上的坐标;有理数
用数轴上点
表示,
叫做点
在数轴上的坐标.
表示数轴上的两点
,
之间的距离.
(1)借助数轴,完成下表:
(2)观察(1)中的表格内容,猜想
______;(用含
,
的式子表示,不用说理)
(3)已知点
在数轴上的坐标是-2,且
,利用(2)中的结论求点
在数轴上的坐标.











(1)借助数轴,完成下表:
![]() | ![]() | ![]() | ![]() |
3 | 2 | 1 | 1 |
1 | 5 | ______ | ______ |
2 | -3 | ______ | ______ |
-4 | 1 | ______ | ______ |
-5 | -2 | ______ | ______ |
-3 | -6 | ______ | ______ |
(2)观察(1)中的表格内容,猜想



(3)已知点



如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1且小于2的数(数轴上1与2这两个数的点空心,表示这个范围不包含数1和2).

请你在数轴上表示出一个范围,使得这个范围:
(1)包含所有大于-3且小于0的数[画在数轴(1)上];
(2)包含
这两个数,且只含有5个整数[画在数轴(2)上];
(3)同时满足以下三个条件:[画在数轴(3)上]
①至少有100对互为相反数和100对互为倒数;
②有最小的正整数;
③这个范围内最大的数与最小的数表示的点的距离大于3但小于4.

请你在数轴上表示出一个范围,使得这个范围:
(1)包含所有大于-3且小于0的数[画在数轴(1)上];
(2)包含

(3)同时满足以下三个条件:[画在数轴(3)上]
①至少有100对互为相反数和100对互为倒数;
②有最小的正整数;
③这个范围内最大的数与最小的数表示的点的距离大于3但小于4.
如图:在数轴上点
表示数
,点
表示数
,点
表示数
,
是多项式
的一次项系数,
是绝对值最小的整数,单项式
的次数为
.

(1)
= ,
= ,
= ;
(2)若将数轴在点
处折叠,则点
与点
重合( 填“能”或“不能”);
(3)点
开始在数轴上运动,若点
以每秒1个单位长度的速度向右运动,同时,点
和点
分别以每秒3个单位长度和2个单位长度的速度向左运动,
秒钟过后,若点
与点B之间的距离表示为
,点
与点
之间的距离表示为
,则
= ,
= (用含
的代数式表示);
(4)请问:AB+BC的值是否随着时间
的变化而改变?若变化,请说明理由;若不变,请求其值.












(1)



(2)若将数轴在点



(3)点













(4)请问:AB+BC的值是否随着时间

对于数轴上﹣a表示的数理解不正确的是()
A.一定是在原点左侧 | B.与a表示的数到原点的距离相等 |
C.有可能在原点的右侧 | D.有可能在原点上 |
在数轴上,点 A,B,C 分别表示 a、b、c,若 a+b+c=0 则点 A、B、C 在数轴上的位置不可能的是( )
A.![]() | B.![]() |
C.![]() | D.![]() |