- 数与式
- + 有理数
- 正数和负数
- 有理数的初步认识
- 数轴
- 相反数
- 绝对值
- 有理数大小比较
- 有理数的运算
- 实数
- 代数式
- 因式分解
- 分式
- 二次根式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知A、B、C三点在数轴上的位置如图所示,它们表示的数分别是a、b、c

(1) 填空:abc________0,a+b________ac,ab-ac________0;(填“>”,“=”或“<”)
(2) 若|a|=2,且点B到点A、C的距离相等
① 当b2=16时,求c的值
② 求b、c之间的数量关系
③P是数轴上B,C两点之间的一个动点设点P表示的数为x.当P点在运动过程中,bx+cx+|x-c|-10|x+a|的值保持不变,求b的值

(1) 填空:abc________0,a+b________ac,ab-ac________0;(填“>”,“=”或“<”)
(2) 若|a|=2,且点B到点A、C的距离相等
① 当b2=16时,求c的值
② 求b、c之间的数量关系
③P是数轴上B,C两点之间的一个动点设点P表示的数为x.当P点在运动过程中,bx+cx+|x-c|-10|x+a|的值保持不变,求b的值
下列说法中:①若
,则
; ②若
,则
; ③若
,则
;④若
与
是同类项,则
;⑤若
、
互为相反数,那么
、
的商必等于
1;其中说法正确数有( )个.














A.2 | B.3 | C.4 | D.5 |
数形结合是数学解题中的一种重要思想,利用数轴可以将数与形完美结合.一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如:数轴上表示4和1的两点之间的距离是|4﹣1|=3;表示﹣3和2两点之间的距离是|﹣3﹣2|=5.

根据以上材料,结合数轴与绝对值的知识回答下列问题:
(1)将数﹣5,﹣
,0,2.5在数轴上表示出来.
(2)若数轴上表示数a的点位于﹣3与2之间,那么|a+3|+|a﹣2|的值是多少?
(3)若A是数轴上的一个点,它表示数a,则|a+5|+|a﹣3|的最小值是多少?当a取多少时|a+5|+|a﹣1|+|a﹣3|有最小值?最小值是多少?

根据以上材料,结合数轴与绝对值的知识回答下列问题:
(1)将数﹣5,﹣

(2)若数轴上表示数a的点位于﹣3与2之间,那么|a+3|+|a﹣2|的值是多少?
(3)若A是数轴上的一个点,它表示数a,则|a+5|+|a﹣3|的最小值是多少?当a取多少时|a+5|+|a﹣1|+|a﹣3|有最小值?最小值是多少?
下列结论:①几个有理数相乘,若其中负因数有奇数个,则积为负;②两个三次多项式的和一定是三次多项式;③若xyz<0,则
+
+
+
的值为0或﹣4;④若a,b互为相反数,则
=﹣1;⑤若x=y,则
=
.其中正确的个数有( )







A.1个 | B.2个 | C.3个 | D.4个 |