- 数与式
- + 有理数
- 正数和负数
- 有理数的初步认识
- 数轴
- 相反数
- 绝对值
- 有理数大小比较
- 有理数的运算
- 实数
- 代数式
- 因式分解
- 分式
- 二次根式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,点
为原点,
、
为数轴上两点,
,且

(1)
、
对应的数分别为________、________;
(2)点
、
分别以
个单位/秒和
个单位/秒的速度相向而行,则几秒后
、
相距
个单位长度?
(3)动点
从点
出发,沿数轴正方向运动,
为线段
的中点,
为线段
的中点.在点
运动的过程中,线段
的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段
的长.






(1)


(2)点







(3)动点









下列说法中,正确的有( )个
①两点之间直线最短;②若
,则a=b;③任何一个有理数都可以用数轴上的一个点来表示;④过n边形的每一个项点有(n﹣2)条对角线.
①两点之间直线最短;②若

A.1 | B.2 | C.3 | D.4 |
下列说法正确的有( )
①一个有理数不是整数就是分数;②从六边形的一个顶点能引出4条对角线;③连接两点之间的线段,就是两点之间的距离;④若AB=BC,则B是AC的中点;⑤符号相反的数是相反数.
①一个有理数不是整数就是分数;②从六边形的一个顶点能引出4条对角线;③连接两点之间的线段,就是两点之间的距离;④若AB=BC,则B是AC的中点;⑤符号相反的数是相反数.
A.1个 | B.2个 | C.3个 | D.4个 |
用函数方法研究动点到定点的距离问题.
在研究一个动点P(x,0)到定点A(1,0)的距离S时,小明发现:
S与x的函数关系为S=
并画出图像如图:

借助小明的研究经验,解决下列问题:
(1)写出动点P(x,0)到定点B(-2,0)的距离S的函数表达式,并求当x取何值时,S取最小值?
(2)设动点P(x,0)到两个定点M(1,0)、N(5,0)的距离和为y.
①随着x增大,y怎样变化?
②当x取何值时,y取最小值,y的最小值是多少?
③当x<1时,证明y随着x增大而变化的规律.
在研究一个动点P(x,0)到定点A(1,0)的距离S时,小明发现:
S与x的函数关系为S=


借助小明的研究经验,解决下列问题:
(1)写出动点P(x,0)到定点B(-2,0)的距离S的函数表达式,并求当x取何值时,S取最小值?
(2)设动点P(x,0)到两个定点M(1,0)、N(5,0)的距离和为y.
①随着x增大,y怎样变化?
②当x取何值时,y取最小值,y的最小值是多少?
③当x<1时,证明y随着x增大而变化的规律.
一条一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k=1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼 米处.