- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- + 算法与程序框图
- 算法的概念
- 程序框图基本符号
- 顺序结构框图
- 条件结构框图
- 变量与赋值
- 基本算法语句
- 算法案例
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在《算法统宗》中有一“以碗知僧”的问题,具体如下“巍巍古寺在山中,不知寺内几多僧.三百六十四只碗,恰合用尽不差争.三人共食一碗饭,四人共进一碗羹.请问先生能算者,都来寺内几多僧.”记该寺内的僧侣人数为
,运行如图所示的程序框图,则输出的
的值为( )




A.![]() | B.![]() | C.![]() | D.![]() |
执行如图所示的程序框图,当输入实数
的值为
时,输出的函数值为2;当输入实数
的值为3时,输出的函数值为7.

(1)求实数
的值,并写出函数
的解析式;
(2)求满足不等式
的
的取值范围.




(1)求实数


(2)求满足不等式


中国元代数学家朱世杰所著《算学启蒙》一书中提到关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,意思是“现有松树高5尺,竹子高2尺,松树每天长自己高度的一半,竹子每天长自己高度的一倍,问在第几天会出现松树和竹子一般高?”如图是源于其思想的一个程序框图,若输入
,
,则输出
的结果为_________.




定义语句“
”表示把正整数
除以
所得的余数赋值给
,如
表示7除以3的余数为1,若输入
,
,则执行框图后输出的结果为( )









A.6 | B.4 | C.2 | D.1 |