- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 加法原理与乘法原理
- + 排列
- 排列与排列数公式
- 排列应用题
- 组合
- 二项式定理
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有________种不同的招聘方案.(用数字作答)
6名同学安排到3个社区
,
,
参加志愿者服务,每个社区安排两名同学,其中甲同学必须到
社区,乙和丙同学均不能到
社区,则不同的安排方法种数为( )





A.5 | B.6 | C.9 | D.12 |
有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.
(1)全体站成一排,甲不站排头也不站排尾;
(2)全体站成一排,女生必须站在一起;
(3)全体站成一排,男生互不相邻.
(1)全体站成一排,甲不站排头也不站排尾;
(2)全体站成一排,女生必须站在一起;
(3)全体站成一排,男生互不相邻.
有
位男生,
位女生和
位老师站在一起照相,要求老师必须站中间,与老师相邻的不能同时为男生或女生,则这样的排法种数是( )



A.![]() | B.![]() | C.![]() | D.![]() |
同学聚会时,某宿舍的4位同学和班主任老师排队合影留念,其中宿舍长必须和班主任相邻,则5人不同的排法种数为( )
A.48 | B.56 | C.60 | D.120 |