- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 补全扇形统计图
- + 根据扇形统计图解决实际问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
雷达图(Radar Chart),又可称为戴布拉图、蜘蛛网图(Spider Chart),原先是财务分析报表的一种,现可用于对研究对象的多维分析.图为甲、乙两人在五个方面的评价值的雷达图,则下列说法不正确的是( )


A.甲、乙两人在次要能力方面的表现基本相同 |
B.甲在沟通、服务、销售三个方面的表现优于乙 |
C.在培训与销售两个方面上,甲的综合表现优于乙 |
D.甲在这五个方面的综合表现优于乙 |
2017年1月,《中国青年报》社会调查中心联合问卷网,对多人进行了一项关于“二十四节气”的调查,请选择合适的图表分别表示以下调查结果:
(1)全部都知道、大部分知道、少部分知道和完全不知道“二十四节气”日期的受访者分别占12.6%、49.0%、34.6%和3.8%;
(2)调查显示,受访者最敏感的节气是立春(50.9%)、冬至(46.4%)和清明(43.9%).其他依次为:立冬(32.2%)、立秋(32.1%)、立夏(29.6%)、夏至(28.5%)、大暑(20.7%)、惊蛰(18.8%)、春分(18.7%)、雨水(18.7%)、大寒(16.4%)、大雪(15.3%)、秋分(14.8%)、小暑(14.0%)、芒种(12.2%)、小满(11.6%)、处暑(11.6%)、白露(11.3%)、霜降(10.7%)和小雪(10.5%).最不敏感的节气是谷雨(10.4%)、小寒(9.7%)和寒露(7.9%).
(1)全部都知道、大部分知道、少部分知道和完全不知道“二十四节气”日期的受访者分别占12.6%、49.0%、34.6%和3.8%;
(2)调查显示,受访者最敏感的节气是立春(50.9%)、冬至(46.4%)和清明(43.9%).其他依次为:立冬(32.2%)、立秋(32.1%)、立夏(29.6%)、夏至(28.5%)、大暑(20.7%)、惊蛰(18.8%)、春分(18.7%)、雨水(18.7%)、大寒(16.4%)、大雪(15.3%)、秋分(14.8%)、小暑(14.0%)、芒种(12.2%)、小满(11.6%)、处暑(11.6%)、白露(11.3%)、霜降(10.7%)和小雪(10.5%).最不敏感的节气是谷雨(10.4%)、小寒(9.7%)和寒露(7.9%).
某校毕业生的去向有三种:回家待业、上大学和补习.现取一个样本调查,调查结果如图所示.若该校每个学生上大学的概率为
,则每个学生不补习的概率为( )



A.![]() | B.![]() | C.![]() | D.![]() |
2017年,世界乒乓球锦标赛在德国的杜赛尔多夫举行.整个比赛精彩纷呈,参赛选手展现出很高的竞技水平,为观众奉献了多场精彩对决.图1(扇形图)和表1是其中一场关键比赛的部分数据统计.两位选手在此次比赛中击球所使用的各项技术的比例统计如图1.在乒乓球比赛中,接发球技术是指回接对方发球时使用的各种方法.选手乙在比赛中的接发球技术统计如表1,其中的前4项技术统称反手技术,后3项技术统称为正手技术.

图1
(Ⅱ)乒乓球接发球技术中的拉球技术包括正手拉球和反手拉球.从表1统计的选手乙的所有拉球中任取两次,至少抽出一次反手拉球的概率是多少?
(Ⅲ)如果仅从表1中选手乙接发球得分率的稳定性来看(不考虑使用次数),你认为选手乙的反手技术更稳定还是正手技术更稳定?(结论不要求证明)

图1
选手乙的接发球技术统计表
技术 | 反手拧球 | 反手搓球 | 反手拉球 | 反手拨球 | 正手搓球 | 正手拉球 | 正手挑球 |
使用次数 | 20 | 2 | 2 | 4 | 12 | 4 | 1 |
得分率 | 55% | 50% | 0% | 75% | 41.7% | 75% | 100% |
表1
(Ⅰ)观察图1,在两位选手共同使用的8项技术中,差异最为显著的是哪两项技术?(Ⅱ)乒乓球接发球技术中的拉球技术包括正手拉球和反手拉球.从表1统计的选手乙的所有拉球中任取两次,至少抽出一次反手拉球的概率是多少?
(Ⅲ)如果仅从表1中选手乙接发球得分率的稳定性来看(不考虑使用次数),你认为选手乙的反手技术更稳定还是正手技术更稳定?(结论不要求证明)
某校按分层抽样的方法从高中三个年级抽取部分学生调查,从三个年级抽取人数的比例为如图所示的扇形面积比,已知高二年级共有学生1 200人,并从中抽取了40人.

(1)该校的总人数为多少?(2)三个年级分别抽取多少人?
(3)在各层抽样中可采取哪种抽样方法?

(1)该校的总人数为多少?(2)三个年级分别抽取多少人?
(3)在各层抽样中可采取哪种抽样方法?
下图是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:

(1)本次一共调查了多少名学生.(2)在图(1)中将②对应的部分补充完整.
(3)若该校有3 000名学生,你估计全校有多少名学生平均每天参加体育活动的时间在0.5时以下?

(1)本次一共调查了多少名学生.(2)在图(1)中将②对应的部分补充完整.
(3)若该校有3 000名学生,你估计全校有多少名学生平均每天参加体育活动的时间在0.5时以下?
某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()


A.167 | B.137 | C.123 | D.93 |
某中学初中部共有500名学生,高中部共有600名学生,各年级段人数构成比例如图所示,则下列说法正确的是( )


A.人数最多的年级段是高二段 | B.初一段人数比高一段人数多 | C.高三段人数比初二段人数少 | D.高二段人数比初三段人数多一倍 |