- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- + 导数的计算
- 基本初等函数的导数公式
- 导数的运算法则
- 简单复合函数的导数
- 导数的加减法
- 导数的乘除法
- 导数在研究函数中的作用
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
给出定义:设f′(x)是函数y=(x)的导函数,f″(x)是函数f′(x)的导函数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”,已知函数f(x)=5x+4sinx﹣cosx的“拐点”是M(x0,f(x0)),则点M( )
A.在直线y=﹣5x上 | B.在直线y=5x上 |
C.在直线y=﹣4x上 | D.在直线y=4x上 |