1.填空题- (共10题)
2.解答题- (共9题)
11.
如图,有一块半圆形空地,开发商计划建一个矩形游泳池
及其矩形附属设施
,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为
,半径为
,矩形的一边
在直径上,点
、
、
、
在圆周上,
、
在边
上,且
,设
.
(1)记游泳池及其附属设施的占地面积为
,求
的表达式;
(2)怎样设计才能符合园林局的要求?














(1)记游泳池及其附属设施的占地面积为


(2)怎样设计才能符合园林局的要求?

14.
已知数列
的前
项和为
,满足
,
,数列
满足
,
,且
.
(1)求数列
和
的通项公式;
(2)若
,数列
的前
项和为
,对任意的
,都有
,求实数
的取值范围.
(3)是否存在正正数
,使


成等差数列?若存在,求出所有满足条件的
;若不存在,请说明理由.









(1)求数列


(2)若







(3)是否存在正正数






18.
某同学在上学路上要经过
、
、
三个带有红绿灯的路口.已知他在
、
、
三个路口遇到红灯的概率依次是
、
、
,遇到红灯时停留的时间依次是
秒、
秒、
秒,且在各路口是否遇到红灯是相互独立的.
(1)求这名同学在上学路上在第三个路口首次遇到红灯的概率;,
(2)求这名同学在上学路上因遇到红灯停留的总时间.












(1)求这名同学在上学路上在第三个路口首次遇到红灯的概率;,
(2)求这名同学在上学路上因遇到红灯停留的总时间.
试卷分析
-
【1】题量占比
填空题:(10道)
解答题:(9道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19